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.
Motivation for WDOs

Consider a partial linear differential operator with constant

coefficients
P= > a,D"

lo|<m

we are interested in solving the equation

Pu=f.
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Motivation for WDOs

Consider a partial linear differential operator with constant

coefficients
P= > a,D"

lo|<m

we are interested in solving the equation
Pu="f.

Using Fourier transform we find that the solution is

u(x) = L eiX"’ELA
9= G Ju 5 O %
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.
Motivation for WDOs

We can think on operators as defined by functions, called symbols,
through integral expressions:

p(x, D)u(x) =

(271T)n / ) e™p(x, £)n(€) d¢.
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.
Motivation for WDOs

We can think on operators as defined by functions, called symbols,
through integral expressions:

p(x, D)u(x) =

(271T)n / ) e™p(x, £)n(€) d¢.

m Class Sy (Kohn-Nirenberg [3]): p € C*°(R" x R"), for any
multi-indices «, 3, there exist a constant C, g such that

10808 p(x,€)| < Cap(1+ [€))m 1o

David Santiago Gémez Cobos

Global pseudodifferential calculus on manifolds.



.
Motivation for WDOs

We can think on operators as defined by functions, called symbols,
through integral expressions:

p(x, D)u(x) =

(271T)n / ) e™p(x, £)n(€) d¢.

m Class Sy (Kohn-Nirenberg [3]): p € C*°(R" x R"), for any
multi-indices «, 3, there exist a constant C, g such that

10808 p(x,€)| < Cap(1+ [€))m 1o

m Class ST (Hormander [2]): p € C*°(R” x R), let
0 <0 < p <1, for any multi-indices a, 3, there exist a
constant C, g such that

— §
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Properties of

m If p€ S and g € S5, set m = max(my, my), then

pq € S£’§+m2 and a+ b €

m Moreover, 6?p € Sm plal &ép € S’T;‘S'ﬂ' for all p €
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If p(x,&) € p(s, then the pseudodifferential operator

p(x, D)u(x) =

Gy o €SP, 00(6)

belongs to W75 := OPST
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If p(x,&) € p(s, then the pseudodifferential operator

1
px. D)) = g5 ., € Plx. 0E) o
belongs to W75 := OPST

We usually would like to have:
m Continuity in "nice” spaces.
m Adjoint to be part of the operator classes (amplitudes).

m Products to be part of the operator classes (amplitudes).
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Continuity

Let0<d<p<l Ifpe Z(;,then

p(x, D) : C®(R") — C=(R")

is continuous. The same holds true for the Schwartz space S(R").
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Calculus: Adjoint

Let 0 <6 < p <1 If p(x,D) € V5, then

p(x, D)* € Vs

and p(x, D)* = p*(x, D) with

il

I [
-0 02p(x, ).

pr(x, &)~

«
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Calculus: Products

Let 0 <0 < p <1 If p(x,D) € VT and q(x, D) € V%, then

p,0!
p(x, D)q(x, D) € W™
and p(x, D)q(x, D) = r(x, D) with
i~ lal

r(x,€) ~ 3 — 08 p(x, )05 a(x, ).

[0}
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Calculus: Products

Let 0 <0 < p <1 If p(x,D) € VT and q(x, D) € V%, then

p(x, D)q(x, D) € W 5™

and p(x, D)q(x, D) = r(x, D) with

j—led

r(ng) ~ Z Fag‘p(x,ﬁ)@fq(x,ﬁ).

[0}

Then one can study many different properties of these operators:
Inequalities, functional calculus, spectral properties, etc.
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.
W DOs on manifolds

One can not use the same definition on a manifold M since Fourier
transform is not globally well-defined.
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W DOs on manifolds

One can not use the same definition on a manifold M since Fourier
transform is not globally well-defined. Then one can use local
structure, i.e., if P: C*(M) — C>*(M), (U, k) a chart, then one
would like

ku(OPY) = (k) L oPyYr* € Ws(k(U))

for all ¢,v € C°(U).
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WDOs on manifolds

One can not use the same definition on a manifold M since Fourier
transform is not globally well-defined. Then one can use local
structure, i.e., if P: C*°(M) — C*°(M), (U, k) a chart, then one
would like

Fa(OPY) = (5°) T oPYK* € WT5(k(U))

for all ¢,v € C°(U).

In this case the symbol p will be a function defined on T*M.
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Change of coordinates

Theorem

Let0<d<p<landl—p<d. Let U; and U, be open sets in
R™ and let ¢ : Uy — Us, @ : Uy — GL(n) be smooth maps. Then

p1(x, &) = p2(d(x), P(x)§)

is in 575(Ur) for every po € ST5(U2).
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Change of coordinates

Theorem

Let0<d<p<landl—p<d. Let U; and U, be open sets in
R" and let ¢ : Uy — U,, ® : Uy — GL(n) be smooth maps. Then

pi(x,§) = p2(9(x), P(x)§)

is in 575(Ur) for every po € ST5(U2).

0<d<p<landl-—p<§impliesthat p > 1/2.
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Problem on having global calculus

One can try to avoid using Fourier transform by

D i(x—=y)-
Pl D)) = o [ p(x uly) .
but this still not globally defined because the phase function

p(x,y,§) = (x—y)-¢

is not invariant.
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Some geometry: Connection

A linear connection V on T*M — M is a splitting of the following
exact sequence:

vV

, ~

I .
O—» VT*M ——>» TT"M —» HT*M —» 0.
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Some geometry: Connection

A linear connection V on T*M — M is a splitting of the following
exact sequence:

vV

, ~

I .
O—» VT*M ——>» TT"M —» HT*M —» 0.

Or a covariant derivative is a R—linear map
V:[(TM) x T(T*M) — [(T*M) such that
V(fs) = df s+ fV,(s) for all smooth function f.
Vi(ais1 + a2s2) = a1Vys1 + a2V, 5.
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Some geometry: Connection

This distribution HT*M is generated by the horizontal lifts of the
standard vector fields v = >~ vk(y)ﬁyk € X(M), which are defined
as follows

V. Z 8 « + Z r y)v 77,67,1

k ij,k

We can extend this derivatives to any tensor.
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Some geometry: Connection

This distribution HT*M is generated by the horizontal lifts of the
standard vector fields v = >~ vk(y)ﬁyk € X(M), which are defined
as follows

V. Z 8 « + Z r y)v 77,67,1

k ij,k

We can extend this derivatives to any tensor.

On the other hand, the distribution VT*M is generated by the
vector fields 0,,,...,0y,.
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Some geometry: Geodesics

m A geodesic is a curve y(t) such that V5% = 0.

m Given a neighborhood Uy of x, we denote by v, (t) the
shortest geodesic joining x and y € U,. We will use de
notation z; = 7y, «(t).

m If we are in a normal coordinate system y* we have that

k k k k -k k k
Vy,x(t):X +t(y - X )7 Vy,x(t):(y - X )

m Let &, : T{M — T M the parallel transport along 7y x(t)
and Ty x = |det®, ,|.
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Some geometry: Densities

The k-density bundle is defined as the associated bundle of the
following representation of GL(n):

GL(n) 2 GL(1)
A |det A",

i.e. the bundle Q" is defined as

Q" :=Fr(M) x, V
M
o x - LR
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Safarov approach: Symbols

Definition
The space S7%5(V) denotes the class of functions a € C*°(T*M)
such that the estimates

‘af;vil U viqa(y7 77)‘ < CK,Oé,il,.‘-,l'q <77>§/n+6q7p‘a|

holds in any coordinates y, for all o and i1, ..., ig. Here y runs
over a compact set K € M, (1), := (1L + w?(y,n))*/? where
w e C®(T*M\ {0}) is homogeneous in 1 of degree 1.

Here we also assume 0 < § < p < 1.
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Safarov [5] approach: Symbols

Same properties:

m If a€ ST5(V) and b € S%(V), set m = max(my, m), then

ab € 5m1+m2(V) and a+b e S75(V).

m Moreover, 9y'a € Sm pla'(V), Vy---Vyace 5m+6q( V) for
allae S (V) and any Vi, ...y Vg 6%( )-
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Safarov [5] approach: Phase functions

Definition
Let V be a sufficiently small neighborhood of A in M x M. We
introduce the phase functions

or(x, ¢, y) = —(Yyx(7),¢), where (x,y) € V,7 €[0,1],{ € T; M.
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Safarov [5] approach: Phase functions

Definition
Let V be a sufficiently small neighborhood of A in M x M. We
introduce the phase functions

or(x, ¢, y) = —(Yyx(7),¢), where (x,y) € V,7 €[0,1],{ € T; M.

m In n.csforall 7 €0,1].
SOT(X7<7y):(X_y)'C'
m For all 7,5 € [0,1]

SOT(X7 va) = @I*T(yv C?X)v SOT(Xv <7Y) = SOS(Xv CDZS,Zq—g’y)'
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Safarov [5] approach: WDOs

Definition
Let A: T(Q2") — I'(Q2%) be a linear operator with Schwartz kernel
I (x,y), i.e, (Au,v) = (o, uv). We say that A is
pseudodifferential if

</ (x,y) is smooth in (M x M)\ A.

On a neighborhood V of A the Schwartz kernel is represented
by an oscillatory integral of the form

1

’Q{(Xay) :(271-)"[)&7_/eitpq—(X,C,y)a(zT’C) dC’ for (Xay) € v

Where pK,T = pH,T(ng) = 'T‘l—){‘T‘—,L;

YyZr © Zr, X"

m K A
David s\fM&Q@sﬂQJ@w@é’ Ws(Q2", V, 7) this class of WDOs.



Safarov [5] approach: Examples

Let (M, g) be a pseudo-Riemannian manifold, V, ¢ its
Levi-Civita connection, then

7, (6,6) = ~Iel2 = 35(x)
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Safarov [5] approach: Examples

Let (M, g) be a pseudo-Riemannian manifold, V, ¢ its
Levi-Civita connection, then

7, (6,6) = ~Iel2 = 35(x)

Suppose M is parallelizable by v, ..., v,. Consider the
operator

a — (%) (%)
A(H)(y7D)/)_ Z Ail ”'AI'1 ’
i1,..0q
then SO'AE!N)(X,S) = {l*lg®(x, €) for all s,k € R, where

o = (1) ... (0n)*", o =0/(x,€) = (vi(x),§).

For anisotropic version see Shargorodsky [6].
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Safarov [5] approach: Nice properties

m For all (94‘)‘e"507(x’<’}’) = (—1)|°“f'y)0<‘7ye"<Pf(X,C7y).
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Safarov [5] approach: Nice properties

m For all a 9¢'e ior(6y) = (—1)lolae efer(xCy),
mletacs$s 5(V) then for all non-negative integers g

oy, ) = 3 1A, Va0t Y AL, ViEaly )

lal<q |a|=g+1

where 3, € Sm 5|a‘(V) and ¢’ = max{d,1 — p}.
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Safarov [5] approach: Adjoint

If A€ W (QF, V) then A* € WM (1%, V) and

oarr(5,€) ~ 3 2 (1 — 20)° DIV o4 (:,E),

al
(03

as (§)x — 0o.
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Safarov [5] approach: Products

Theorem
Let A€ W75 (Q", V), B € W% (Q%, V), and let at least one of
these wDOs be properly supported Assume that at least one of
the following conditions is fulfilled:

p> 3

the connection V is symmetric and p > %;

the connection V is flat.
Then AB € W™ (Q%, V) and
111

oAB(x,€) ~ f,E—P(“)( x,€) D¢ o a(x, €) DIV 0s(x, £),
a,Byy

as (&) — 00.
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Safarov [5] approach: Other results

m [2—estimates.
m Parametrices.

m Functional calculus for powers of the laplacian.
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Fefferman[1] LP—estimates

a) Let o(x,€) € S;° r_“;(:’?”)With0§5<1—a<1and
B < na/2. Then o(x, D) is bounded on LP for

‘1_1'§7:5{n/2+)\] )\:na/2—ﬁ‘
b 2|7 B+ |’ 1-a
b) If |1/p —1/2| > ~, then the symbol

ellsl”

U(X,f) Jaﬁ(f) 1_’_’5‘/3 651 a.0

provides an operator o,3(D) unbounded on LP.
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Fefferman[1] LP—estimates

|
c) Let o(x,§) € 5;_";?2, so that the critical LP space is L.
Although o(x, D) is unbounded on L%, it is bounded on the

Hardy space H!.
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LP—estimates for Safarov WDOs

We can define naturally the intrinsic LP spaces on manifolds as
follows:

1P (M,Q1/P) = {/\ cQl/r. (/ wp>1/p < oo} :
M
L (/\/I,QO> = {f € Q0 esssup|f| < oo},

and using our fixed section we can define those spaces for any

k-density
1P\ /P
LP (M, Q) = AGQ”:(/ ‘)\|dX|P " ) <00y,
M

L (M, Q%) := {f € Q" : esssup |f|dx|™"| < o0} .
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LP—estimates for Safarov WDOs

Now, we define the space BMO for k-densities. Let g a riemannian
metric on M and let d its associated geodesic distance. We denote
rp the injectivity radius of M. Let

Bi(x)={y e M:d(x,y) <€}

and .
Bl = [ lxl
Be(x)
Then we define the average of a k-density A as
— 1
Ae(x) =
[B(x)| Je.(x)

note that this is a function \c : M - R, i.e. a 0-density.
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LP—estimates for Safarov WDOs

Finally, we define the BMO norm of a k-density A:

1 _
y)dy|™" = Ae(x)]|dy],
< B0 B(XI()I | (>)ldy]

xeM

[[Allemo = sup

therefore

BMO(M,QH) = {)\ e Q" H)‘HBMO < OO}
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LP—estimates for Safarov WDOs

Let p(x,&) € ng(V) with0=d <p<1land g <n(l-—p)/2.
Assume that at least one of the following conditions is fulfilled:
p> 3
the connection V is symmetric and p > %;

the connection V is flat.
. Then p(x, D) is bounded from LP to LP for
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Relation with other global pseudodifferential calculus

In [4] Ruzhansky and Turunnen constructed a global
pseudodifferential calculus for compact Lie groups using the
representation theory of the group G. In this case, the
pseudodifferential operators take the following form

Af = 3 dim(€) Tr (g(x)aA(x,i)?(f))-

[€]eG
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Relation with other global pseudodifferential calculus

In [4] Ruzhansky and Turunnen constructed a global
pseudodifferential calculus for compact Lie groups using the
representation theory of the group G. In this case, the
pseudodifferential operators take the following form

Af = 3" dim(€) Tr (&(x)aa(x, ©)F(€)) -
[elec
Problem: Relate the pseudodifferential calculus defined by symbols
modelled on the geometric phase spaces T*, with connections, to

those defined by symbols modelled on the unitary phase spaces
G xG.
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i hanks for your attention!
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