Global pseudodifferential calculus on manifolds.

David Santiago Gómez Cobos

Department of Mathematics: Analysis, Logic and Discrete Mathematics, Ghent University, Belgium

Summer School: Singular Integrals on Nilpotent Lie Groups and Related Topics 19.-23. September 2022

Göttingen, Germany

September 21, 2022

David Santiago Gómez Cobos

Classical ΨDOs.

- Safarov Calculus.
- 3 $L^p L^p$ bounds.
- Relation with other global pseudodifferential calculus and other perspective of research.

Classical ΨDOs.

2 Safarov Calculus.

- 3 $L^p L^p$ bounds.
- 4 Relation with other global pseudodifferential calculus and other perspective of research.

- Classical ΨDOs.
- 2 Safarov Calculus.
- 3 $L^p L^p$ bounds.
- 4 Relation with other global pseudodifferential calculus and other perspective of research.

- 1 Classical ΨDOs.
- 2 Safarov Calculus.
- 3 $L^p L^p$ bounds.
- 4 Relation with other global pseudodifferential calculus and other perspective of research.

Consider a partial linear differential operator with constant coefficients

$$P=\sum_{|\alpha|\leq m}a_{\alpha}D^{\alpha},$$

we are interested in solving the equation

$$Pu = f$$
.

Using Fourier transform we find that the solution is

$$u(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{ix\cdot\xi} \frac{1}{p(\xi)} \hat{f}(\xi) d\xi$$

David Santiago Gómez Cobos

Consider a partial linear differential operator with constant coefficients

$$P=\sum_{|\alpha|\leq m}a_{\alpha}D^{\alpha},$$

we are interested in solving the equation

$$Pu = f$$
.

Using Fourier transform we find that the solution is

$$u(x) = rac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{ix\cdot\xi} rac{1}{p(\xi)} \widehat{f}(\xi) d\xi.$$

David Santiago Gómez Cobos

We can think on operators as defined by functions, called symbols, through integral expressions:

$$p(x,D)u(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{ix\cdot\xi} p(x,\xi)\hat{u}(\xi) d\xi.$$

 Class S^m_{1,0} (Kohn-Nirenberg [3]): p ∈ C[∞](ℝⁿ × ℝⁿ), for any multi-indices α, β, there exist a constant C_{α,β} such that |∂^β_x∂^α_ξp(x,ξ)| ≤ C_{α,β}(1 + |ξ|)^{m-|α|}.

Class $S^m_{\rho,\delta}$ (Hörmander [2]): $\rho \in C^{\infty}(\mathbb{R}^n \times \mathbb{R}^n)$, let $0 \le \delta < \rho \le 1$, for any multi-indices α, β , there exist a constant $C_{\alpha,\beta}$ such that

 $|\partial_x^\beta \partial_\xi^\alpha p(x,\xi)| \le C_{\alpha,\beta} (1+|\xi|)^m \overline{\mathcal{A}}^{|\alpha|+\delta|\beta|} \ge 5 2 5 2 5 4 4/35$

We can think on operators as defined by functions, called symbols, through integral expressions:

$$p(x,D)u(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{ix\cdot\xi} p(x,\xi)\hat{u}(\xi) d\xi.$$

 Class S^m_{1,0} (Kohn-Nirenberg [3]): p ∈ C[∞](ℝⁿ × ℝⁿ), for any multi-indices α, β, there exist a constant C_{α,β} such that |∂^β_x∂^α_ξp(x,ξ)| ≤ C_{α,β}(1 + |ξ|)^{m-|α|}.

Class $S^m_{\rho,\delta}$ (Hörmander [2]): $\rho \in C^{\infty}(\mathbb{R}^n \times \mathbb{R}^n)$, let $0 \le \delta < \rho \le 1$, for any multi-indices α, β , there exist a constant $C_{\alpha,\beta}$ such that

 $|\partial_x^\beta \partial_\xi^\alpha p(x,\xi)| \leq C_{\alpha,\beta} (1+|\xi|)^{m-p} |\alpha| + \delta^{\beta} |\beta| \geq 5 \leq 5 \leq 4/35$

We can think on operators as defined by functions, called symbols, through integral expressions:

$$p(x,D)u(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{ix\cdot\xi} p(x,\xi)\hat{u}(\xi) d\xi.$$

- Class S^m_{1,0} (Kohn-Nirenberg [3]): p ∈ C[∞](ℝⁿ × ℝⁿ), for any multi-indices α, β, there exist a constant C_{α,β} such that |∂^β_x∂^α_ξp(x,ξ)| ≤ C_{α,β}(1 + |ξ|)^{m-|α|}.
- Class $S_{\rho,\delta}^m$ (Hörmander [2]): $p \in C^{\infty}(\mathbb{R}^n \times \mathbb{R}^n)$, let $0 \leq \delta < \rho \leq 1$, for any multi-indices α, β , there exist a constant $C_{\alpha,\beta}$ such that

 $|\partial_x^\beta \partial_\xi^\alpha p(x,\xi)| \leq C_{\alpha,\beta} (1+|\xi|)^{m-\rho|\alpha|+\delta|\beta|} = 0 \quad \text{if } \beta \leq 0 \quad \text{if$

Proposition

• If
$$p \in S_{\rho,\delta}^{m_1}$$
 and $q \in S_{\rho,\delta}^{m_2}$, set $m = \max(m_1, m_2)$, then
 $pq \in S_{\rho,\delta}^{m_1+m_2}$ and $a + b \in S_{\rho,\delta}^m$.
• Moreover, $\partial_{\xi}^{\alpha} p \in S_{\rho,\delta}^{m-\rho|\alpha|}$, $\partial_x^{\beta} p \in S_{\rho,\delta}^{m+\delta|\beta|}$ for all $p \in S_{\rho,\delta}^m$.

・ロト・西ト・モン・ビー うくぐ

David Santiago Gómez Cobos

$$\Psi^m_{\rho,\delta} := OPS^m_{\rho,\delta}$$

Definition

If $p(x,\xi) \in S^m_{\rho,\delta}$, then the pseudodifferential operator

$$p(x,D)u(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{ix\cdot\xi} p(x,\xi)\hat{u}(\xi) d\xi$$

belongs to $\Psi^m_{\rho,\delta} := OPS^m_{\rho,\delta}.$

We usually would like to have:

- Continuity in "nice" spaces.
- Adjoint to be part of the operator classes (amplitudes).
- Products to be part of the operator classes (amplitudes).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

6/35

$$\Psi^m_{
ho,\delta} := OPS^m_{
ho,\delta}$$

Definition

If $p(x,\xi) \in S^m_{\rho,\delta}$, then the pseudodifferential operator

$$p(x,D)u(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{ix\cdot\xi} p(x,\xi)\hat{u}(\xi) d\xi$$

belongs to $\Psi^m_{\rho,\delta} := OPS^m_{\rho,\delta}$.

We usually would like to have:

- Continuity in "nice" spaces.
- Adjoint to be part of the operator classes (amplitudes).
- Products to be part of the operator classes (amplitudes).

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ → ○ ● ○ ○ 6/35

Continuity

Theorem

Let $0 \leq \delta < \rho \leq 1$. If $p \in S^m_{\rho,\delta}$, then

$$p(x,D): C^{\infty}(\mathbb{R}^n) \to C^{\infty}(\mathbb{R}^n)$$

is continuous. The same holds true for the Schwartz space $S(\mathbb{R}^n)$.

Calculus: Adjoint

Theorem

Let $0 \le \delta < \rho \le 1$. If $p(x, D) \in \Psi^m_{\rho, \delta}$, then $p(x, D)^* \in \Psi^m_{\rho, \delta}$

and $p(x, D)^* = p^*(x, D)$ with

$$p^*(x,\xi) \sim \sum_{\alpha} \frac{i^{-|\alpha|}}{\alpha!} \partial_{\xi}^{\alpha} \partial_{x}^{\alpha} \overline{p(x,\xi)}.$$

・ロ・・四・・ヨ・・ヨ・ のへの

8/35

David Santiago Gómez Cobos

Calculus: Products

Theorem

Let $0 \leq \delta < \rho \leq 1$. If $p(x, D) \in \Psi_{\rho,\delta}^{m_1}$ and $q(x, D) \in \Psi_{\rho,\delta}^{m_2}$, then $p(x, D)q(x, D) \in \Psi_{\rho,\delta}^{m_1+m_2}$ and p(x, D)q(x, D) = r(x, D) with $r(x, \xi) \sim \sum_{\alpha} \frac{i^{-|\alpha|}}{\alpha!} \partial_{\xi}^{\alpha} p(x, \xi) \partial_x^{\alpha} q(x, \xi).$

Then one can study many different properties of these operators: Inequalities, functional calculus, spectral properties, etc.

<ロ> < 回> < 回> < 三> < 三> < 三> < 三> のへで 9/35

David Santiago Gómez Cobos

Calculus: Products

Theorem

Let $0 \leq \delta < \rho \leq 1$. If $p(x, D) \in \Psi_{\rho, \delta}^{m_1}$ and $q(x, D) \in \Psi_{\rho, \delta}^{m_2}$, then $p(x, D)q(x, D) \in \Psi_{\rho, \delta}^{m_1+m_2}$ and p(x, D)q(x, D) = r(x, D) with $r(x, \xi) \sim \sum_{\alpha} \frac{i^{-|\alpha|}}{\alpha!} \partial_{\xi}^{\alpha} p(x, \xi) \partial_x^{\alpha} q(x, \xi).$

Then one can study many different properties of these operators: Inequalities, functional calculus, spectral properties, etc.

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ○ 9/35

ΨDOs on manifolds

One can not use the same definition on a manifold M since Fourier transform is not globally well-defined. Then one can use local structure, i.e., if $P : C^{\infty}(M) \to C^{\infty}(M)$, (U, κ) a chart, then one would like

$$\kappa_*(\phi P\psi) = (\kappa^*)^{-1} \phi P\psi \kappa^* \in \Psi^m_{\rho,\delta}(\kappa(U))$$

for all $\phi, \psi \in C^{\infty}_{c}(U)$.

Remark

In this case the symbol p will be a function defined on T^*M .

David Santiago Gómez Cobos

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

ΨDOs on manifolds

One can not use the same definition on a manifold M since Fourier transform is not globally well-defined. Then one can use local structure, i.e., if $P: C^{\infty}(M) \to C^{\infty}(M)$, (U, κ) a chart, then one would like

$$\kappa_*(\phi P\psi) = (\kappa^*)^{-1} \phi P\psi \kappa^* \in \Psi^m_{\rho,\delta}(\kappa(U))$$

for all $\phi, \psi \in C^{\infty}_{c}(U)$.

Remark

In this case the symbol p will be a function defined on T^*M .

ΨDOs on manifolds

One can not use the same definition on a manifold M since Fourier transform is not globally well-defined. Then one can use local structure, i.e., if $P: C^{\infty}(M) \to C^{\infty}(M)$, (U, κ) a chart, then one would like

$$\kappa_*(\phi P\psi) = (\kappa^*)^{-1} \phi P\psi \kappa^* \in \Psi^m_{\rho,\delta}(\kappa(U))$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで 10/35

for all $\phi, \psi \in C^{\infty}_{c}(U)$.

Remark

In this case the symbol p will be a function defined on T^*M .

David Santiago Gómez Cobos

Change of coordinates

Theorem

Let $0 \le \delta < \rho \le 1$ and $1 - \rho \le \delta$. Let U_1 and U_2 be open sets in \mathbb{R}^n and let $\phi : U_1 \to U_2$, $\Phi : U_1 \to GL(n)$ be smooth maps. Then

$$p_1(x,\xi) = p_2(\phi(x),\Phi(x)\xi)$$

is in $S^m_{\rho,\delta}(U_1)$ for every $p_2 \in S^m_{\rho,\delta}(U_2)$.

Remark

 $0 \le \delta < \rho \le 1$ and $1 - \rho \le \delta$ implies that $\rho > 1/2$.

Change of coordinates

Theorem

Let $0 \le \delta < \rho \le 1$ and $1 - \rho \le \delta$. Let U_1 and U_2 be open sets in \mathbb{R}^n and let $\phi : U_1 \to U_2$, $\Phi : U_1 \to GL(n)$ be smooth maps. Then

$$p_1(x,\xi) = p_2(\phi(x),\Phi(x)\xi)$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 = • • ○ � ○ • 11/35

is in $S^m_{\rho,\delta}(U_1)$ for every $p_2 \in S^m_{\rho,\delta}(U_2)$.

Remark

$$0 \le \delta < \rho \le 1$$
 and $1 - \rho \le \delta$ implies that $\rho > 1/2$.

David Santiago Gómez Cobos

One can try to avoid using Fourier transform by

$$p(x,D)u(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} e^{i(x-y)\cdot\xi} p(x,\xi)u(y) \, dy \, d\xi,$$

but this still not globally defined because the phase function

$$\varphi(x,y,\xi) = (x-y)\cdot\xi$$

is not invariant.

David Santiago Gómez Cobos

A linear connection ∇ on $T^*M \rightarrow M$ is a splitting of the following exact sequence:

$$0 \longrightarrow VT^*M \longrightarrow TT^*M \longrightarrow HT^*M \longrightarrow 0.$$

Or a covariant derivative is a \mathbb{R} -linear map $\nabla : \Gamma(TM) \times \Gamma(T^*M) \rightarrow \Gamma(T^*M)$ such that 1 $\nabla_v(fs) = df \ s + f \nabla_v(s)$ for all smooth function f. 2 $\nabla_v(a_1s_1 + a_2s_2) = a_1 \nabla_v s_1 + a_2 \nabla_v s_2$.

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ● � � � 13/35

David Santiago Gómez Cobos

A linear connection ∇ on $T^*M \rightarrow M$ is a splitting of the following exact sequence:

$$0 \longrightarrow VT^*M \longrightarrow TT^*M \longrightarrow HT^*M \longrightarrow 0.$$

Or a covariant derivative is a
$$\mathbb{R}$$
-linear map
 $\nabla : \Gamma(TM) \times \Gamma(T^*M) \rightarrow \Gamma(T^*M)$ such that
1 $\nabla_v(fs) = df \ s + f \nabla_v(s)$ for all smooth function f .
2 $\nabla_v(a_1s_1 + a_2s_2) = a_1 \nabla_v s_1 + a_2 \nabla_v s_2$.

This distribution HT^*M is generated by the horizontal lifts of the standard vector fields $v = \sum v^k(y)\partial_{y^k} \in \mathfrak{X}(M)$, which are defined as follows

$$abla_{\mathbf{v}} = \sum_{k} \mathbf{v}^{k}(y) \partial_{y^{k}} + \sum_{i,j,k} \mathsf{\Gamma}^{i}_{kj}(y) \mathbf{v}^{k}(y) \eta_{i} \partial_{\eta_{j}}.$$

We can extend this derivatives to any tensor.

On the other hand, the distribution VT^*M is generated by the vector fields $\partial_{\eta_1}, \ldots, \partial_{\eta_1}$.

This distribution HT^*M is generated by the horizontal lifts of the standard vector fields $v = \sum v^k(y)\partial_{y^k} \in \mathfrak{X}(M)$, which are defined as follows

$$abla_{\mathbf{v}} = \sum_{k} \mathbf{v}^{k}(y) \partial_{y^{k}} + \sum_{i,j,k} \mathsf{\Gamma}^{i}_{kj}(y) \mathbf{v}^{k}(y) \eta_{i} \partial_{\eta_{j}}.$$

We can extend this derivatives to any tensor.

On the other hand, the distribution VT^*M is generated by the vector fields $\partial_{\eta_1}, \ldots, \partial_{\eta_1}$.

Some geometry: Geodesics

- A geodesic is a curve $\gamma(t)$ such that $\nabla_{\dot{\gamma}}\dot{\gamma} = 0$.
- Given a neighborhood U_x of x, we denote by γ_{y,x}(t) the shortest geodesic joining x and y ∈ U_x. We will use de notation z_t = γ_{y,x}(t).
- If we are in a normal coordinate system y^k we have that

$$\gamma_{y,x}^{k}(t) = x^{k} + t(y^{k} - x^{k}), \quad \dot{\gamma}_{y,x}^{k}(t) = (y^{k} - x^{k}).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - ��� 15/35

• Let $\Phi_{y,x} : T_x^* M \to T_y^* M$ the parallel transport along $\gamma_{y,x}(t)$ and $\Upsilon_{y,x} = |\det \Phi_{y,x}|$.

David Santiago Gómez Cobos

Some geometry: Densities

The κ -density bundle is defined as the associated bundle of the following representation of GL(n):

$$egin{aligned} \mathsf{GL}(n) & \stackrel{
ho}{ o} \mathsf{GL}(1) \ A & \mapsto |\det A|^{-\kappa}, \end{aligned}$$

i.e. the bundle Ω^{κ} is defined as

$$\Omega^{\kappa} := \mathsf{Fr}(M) imes_{
ho} V$$

$$\Omega^{\kappa} \times \Omega^{1-\kappa} \xrightarrow{\langle \cdot, \cdot \rangle = \int} \mathbb{R}.$$

David Santiago Gómez Cobos

Safarov approach: Symbols

Definition

The space $S^m_{\rho,\delta}(\nabla)$ denotes the class of functions $a \in C^{\infty}(T^*M)$ such that the estimates

$$\left|\partial_{\eta}^{\alpha} \nabla_{i_{1}} \dots \nabla_{i_{q}} \mathsf{a}(y, \eta)\right| \leq C_{\mathcal{K}, \alpha, i_{1}, \dots, i_{q}} \langle \eta \rangle_{y}^{m+\delta q-\rho|\alpha|}$$

holds in any coordinates y, for all α and i_1, \ldots, i_q . Here y runs over a compact set $K \subset M$, $\langle \eta \rangle_y := (1 + w^2(y, \eta))^{1/2}$ where $w \in C^{\infty}(T^*M \setminus \{0\})$ is homogeneous in η of degree 1.

Here we also assume $0 \le \delta < \rho \le 1$.

Safarov [5] approach: Symbols

Same properties:

Proposition

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ◆ ○ へ ⁽²⁾ 18/35

David Santiago Gómez Cobos

Safarov [5] approach: Phase functions

Definition

Let V be a sufficiently small neighborhood of Δ in $M \times M$. We introduce the phase functions

 $\varphi_\tau(x,\zeta,y) = - \langle \dot{\gamma}_{y,x}(\tau),\zeta\rangle, \text{ where } (x,y) \in V, \tau \in [0,1], \zeta \in \mathcal{T}^*_{z_\tau} \mathcal{M}.$

In n.c.s for all $\tau \in [0, 1]$.

$$\varphi_{\tau}(x,\zeta,y)=(x-y)\cdot\zeta.$$

For all $\tau, s \in [0, 1]$

$$\varphi_{\tau}(x,\zeta,y) = \varphi_{1-\tau}(y,\zeta,x), \quad \varphi_{\tau}(x,\zeta,y) = \varphi_{s}(x,\Phi_{Z_{s},Z_{\tau}}\zeta,y).$$

Safarov [5] approach: Phase functions

Definition

Let V be a sufficiently small neighborhood of Δ in $M \times M$. We introduce the phase functions

$$arphi_{ au}(x,\zeta,y)=-\langle\dot{\gamma}_{y,x}(au),\zeta
angle, ext{ where } (x,y)\in V, au\in [0,1],\zeta\in \mathcal{T}^*_{z_{ au}}\mathcal{M}.$$

In n.c.s for all
$$\tau \in [0, 1]$$
.

$$\varphi_{\tau}(x,\zeta,y)=(x-y)\cdot\zeta.$$

For all $\tau, s \in [0, 1]$

$$\varphi_{\tau}(x,\zeta,y) = \varphi_{1-\tau}(y,\zeta,x), \quad \varphi_{\tau}(x,\zeta,y) = \varphi_{s}(x,\Phi_{z_{s},z_{\tau}}\zeta,y).$$

Safarov [5] approach: ΨDOs

Definition

Let $A : \Gamma_c(\Omega^{\kappa}) \to \Gamma(\Omega^{\kappa})$ be a linear operator with Schwartz kernel $\mathscr{A}(x, y)$, i.e, $\langle Au, v \rangle = \langle \mathscr{A}, uv \rangle$. We say that A is pseudodifferential if

- 1 $\mathscr{A}(x,y)$ is smooth in $(M \times M) \setminus \Delta$.
- 2 On a neighborhood V of Δ the Schwartz kernel is represented by an oscillatory integral of the form

$$\mathscr{A}(x,y) = \frac{1}{(2\pi)^n} p_{\kappa,\tau} \int e^{i\varphi_\tau(x,\zeta,y)} a(z_\tau,\zeta) \ d\zeta, \text{ for } (x,y) \in V$$

where
$$p_{\kappa,\tau} = p_{\kappa,\tau}(x,y) = \Upsilon_{y,z_{\tau}}^{1-\kappa} \Upsilon_{z_{\tau},x}^{-\kappa}$$
.
Savid some denote by $\Psi_{\rho,\delta}^m(\Omega^{\kappa}, \nabla, \tau)$ this class of Ψ DOs.

Safarov [5] approach: Examples

1 Let (M,g) be a pseudo-Riemannian manifold, ∇_{LC} its Levi-Civita connection, then

$$\sigma_{\Delta_g}(x,\xi) = -|\xi|_x^2 = \frac{1}{3}S(x).$$

2 Suppose *M* is parallelizable by v₁,..., v_n. Consider the operator

$$A^{lpha}_{(\kappa)}(y,D_y)=\sum_{i_1,\ldots,i_q}A^{(\kappa)}_{i_1}\cdots A^{(\kappa)}_{i_1},$$

then ${}_{s}\sigma_{A^{\alpha}_{(\kappa)}}(x,\xi) = i^{|\alpha|}\sigma^{\alpha}(x,\xi)$ for all $s, \kappa \in \mathbb{R}$, where $\sigma^{\alpha} = (\sigma_{1})^{\alpha_{1}} \dots (\sigma_{n})^{\alpha_{n}}, \quad \sigma_{l} = \sigma_{l}(x,\xi) = \langle v_{l}(x), \xi \rangle.$

For anisotropic version see Shargorodsky [6]. (문) 문 가지만 21/35 David Santiago Gómez Cobos

Safarov [5] approach: Examples

1 Let (M,g) be a pseudo-Riemannian manifold, ∇_{LC} its Levi-Civita connection, then

$$\sigma_{\Delta_g}(x,\xi) = -|\xi|_x^2 = \frac{1}{3}S(x).$$

Suppose *M* is parallelizable by v₁,..., v_n. Consider the operator

$$A^{lpha}_{(\kappa)}(y,D_y)=\sum_{i_1,\ldots,i_q}A^{(\kappa)}_{i_1}\cdots A^{(\kappa)}_{i_1},$$

then ${}_{s}\sigma_{\mathcal{A}_{(\kappa)}^{\alpha}}(x,\xi) = i^{|\alpha|}\sigma^{\alpha}(x,\xi)$ for all $s, \kappa \in \mathbb{R}$, where $\sigma^{\alpha} = (\sigma_{1})^{\alpha_{1}} \dots (\sigma_{n})^{\alpha_{n}}, \quad \sigma_{l} = \sigma_{l}(x,\xi) = \langle v_{l}(x), \xi \rangle.$

For anisotropic version see Shargorodsky [6]. 로마르타 로 카이아 21/35 David Santiago Gómez Cobos

Safarov [5] approach: Nice properties

For all
$$\alpha \ \partial_{\zeta}^{\alpha} e^{i\varphi_{\tau}(x,\zeta,y)} = (-1)^{|\alpha|} \dot{\gamma}_{x,y}^{\alpha} e^{i\varphi_{\tau}(x,\zeta,y)}$$
.
Let $a \in S^{m}_{\rho,\delta}(\nabla)$, then for all non-negative integers q
 $a(y, \Phi_{y,x}\xi) = \sum_{|\alpha| \le q} \frac{1}{\alpha!} \dot{\gamma}_{x,y}^{\alpha} \nabla_{x}^{\alpha} a(x,\xi) + \sum_{|\alpha|=q+1} \dot{\gamma}_{x,y}^{\alpha} \nabla_{x}^{\alpha} \tilde{a}_{\alpha}(y,x,\xi)$

where $\tilde{a}_{\alpha} \in S^{m-\delta|\alpha|}_{\rho,\delta'}(\nabla)$ and $\delta' = \max\{\delta, 1-\rho\}$.

<□ ▶ < @ ▶ < E ▶ < E ▶ E → ♡ < ♡ 22/35

David Santiago Gómez Cobos

Safarov [5] approach: Nice properties

For all
$$\alpha \ \partial_{\zeta}^{\alpha} e^{i\varphi_{\tau}(x,\zeta,y)} = (-1)^{|\alpha|} \dot{\gamma}_{x,y}^{\alpha} e^{i\varphi_{\tau}(x,\zeta,y)}$$
.
Let $a \in S_{\rho,\delta}^{m}(\nabla)$, then for all non-negative integers q
 $a(y, \Phi_{y,x}\xi) = \sum_{|\alpha| \le q} \frac{1}{\alpha!} \dot{\gamma}_{x,y}^{\alpha} \nabla_{x}^{\alpha} a(x,\xi) + \sum_{|\alpha|=q+1} \dot{\gamma}_{x,y}^{\alpha} \nabla_{x}^{\alpha} \tilde{a}_{\alpha}(y,x,\xi)$

<□ ▶ < @ ▶ < E ▶ < E ▶ E → ♡ < ♡ 22/35

where
$$\tilde{a}_{\alpha} \in S^{m-\delta|\alpha|}_{\rho,\delta'}(\nabla)$$
 and $\delta' = \max\{\delta, 1-\rho\}$.

David Santiago Gómez Cobos

Safarov [5] approach: Adjoint

Theorem

If $A \in \Psi^m_{\rho,\delta}\left(\Omega^{\kappa}, \nabla\right)$ then $A^* \in \Psi^m_{\rho,\delta}\left(\Omega^{1-\kappa}, \nabla\right)$ and

$$\sigma_{A^*,\tau}(x,\xi) \sim \sum_{\alpha} \frac{1}{\alpha!} (1-2\tau)^{|\alpha|} D^{\alpha}_{\xi} \nabla^{\alpha}_x \overline{\sigma_{A,\tau}(x,\xi)},$$

as $\langle \xi \rangle_x \to \infty$.

Safarov [5] approach: Products

Theorem

Let $A \in \Psi_{\rho,\delta}^{m_1}(\Omega^{\kappa}, \nabla)$, $B \in \Psi_{\rho,\delta}^{m_2}(\Omega^{\kappa}, \nabla)$, and let at least one of these ψ DOs be properly supported. Assume that at least one of the following conditions is fulfilled:

$$1 \ \rho > \frac{1}{2};$$

2 the connection ∇ is symmetric and $\rho > \frac{1}{3}$;

3 the connection ∇ is flat.

Then
$$AB \in \Psi^{m_1+m_2}_{
ho,\delta}\left(\Omega^\kappa,
abla
ight)$$
 and

$$\sigma_{AB}(x,\xi) \sim \sum_{\alpha,\beta,\gamma} \frac{1}{\alpha!} \frac{1}{\beta!} \frac{1}{\gamma!} P_{\beta,\gamma}^{(\kappa)}(x,\xi) D_{\xi}^{\alpha+\beta} \sigma_A(x,\xi) D_{\xi}^{\gamma} \nabla_x^{\alpha} \sigma_B(x,\xi)$$

as $\langle \xi
angle_{\scriptscriptstyle X}
ightarrow \infty.$ David Santiago Gómez Cobos

Safarov [5] approach: Other results

- L²−estimates.
- Parametrices.
- Functional calculus for powers of the laplacian.

Fefferman[1] L^p-estimates

Theorem

a) Let $\sigma(x,\xi) \in S_{1-a,\delta}^{-\beta}(\mathbb{R}^n)$ with $0 \leq \delta < 1 - a < 1$ and $\beta < na/2$. Then $\sigma(x,D)$ is bounded on L^p for

$$\left|\frac{1}{p} - \frac{1}{2}\right| \leq \gamma = \frac{\beta}{n} \left[\frac{n/2 + \lambda}{\beta + \lambda}\right], \lambda = \frac{na/2 - \beta}{1 - a}$$

b) If $|1/p - 1/2| > \gamma$, then the symbol

$$\sigma(x,\xi) = \sigma_{lphaeta}(\xi) = rac{e^{i|\xi|^{lpha}}}{1+|\xi|^{eta}} \in S^{-eta}_{1-a.0}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへで

provides an operator $\sigma_{\alpha\beta}(D)$ unbounded on L^{p} .

Fefferman[1] L^p-estimates

c) Let $\sigma(x,\xi) \in S_{1-a\delta}^{-na/2}$, so that the critical L^p space is L^1 . Although $\sigma(x,D)$ is unbounded on L^1 , it is bounded on the Hardy space H^1 .

David Santiago Gómez Cobos

We can define naturally the intrinsic L^p spaces on manifolds as follows:

$$L^{p}\left(M,\Omega^{1/p}\right) := \left\{\lambda \in \Omega^{1/p} : \left(\int_{M} |\lambda|^{p}\right)^{1/p} < \infty\right\},\$$
$$L^{\infty}\left(M,\Omega^{0}\right) := \left\{f \in \Omega^{0} : \operatorname{ess\,sup}|f| < \infty\right\},\$$

and using our fixed section we can define those spaces for any $\kappa\text{-density}$

$$L^{p}(M,\Omega^{\kappa}) := \left\{ \lambda \in \Omega^{\kappa} : \left(\int_{M} \left| \lambda | dx \right|^{\frac{1}{p}-\kappa} \right|^{p} \right)^{1/p} < \infty \right\},$$

$$L^{\infty}(M,\Omega^{\kappa}) := \left\{ f \in \Omega^{\kappa} : \operatorname{ess\,sup} |f| dx |^{-\kappa}| < \infty \right\}.$$

Now, we define the space BMO for κ -densities. Let g a riemannian metric on M and let d its associated geodesic distance. We denote r_0 the injectivity radius of M. Let

$$B_{\epsilon}(x) = \{y \in M : d(x, y) < \epsilon\}$$

and

$$|B_{\epsilon}(x)| = \int_{B_{\epsilon}(x)} |dx|.$$

Then we define the average of a κ -density λ as

$$\overline{\lambda_{\epsilon}}(x) = rac{1}{|B_{\epsilon}(x)|} \int_{B_{\epsilon}(x)} \lambda |dx|^{1-\kappa},$$

note that this is a function $\overline{\lambda_{\epsilon}}: M \to \mathbb{R}$, i.e., a 0-density \mathbb{R} , \mathbb{R}_{ϵ} ,

Finally, we define the BMO norm of a κ -density λ :

$$||\lambda||_{\mathsf{BMO}} = \sup_{\substack{\epsilon < r_0 \ x \in M}} rac{1}{|B_\epsilon(x)|} \int_{B_\epsilon(x)} |\lambda(y)| dy|^{-\kappa} - \overline{\lambda_\epsilon}(x) ||dy|,$$

therefore

$$\mathsf{BMO}(M,\Omega^{\kappa}) = \{\lambda \in \Omega^{\kappa} : ||\lambda||_{\mathsf{BMO}} < \infty\}.$$

David Santiago Gómez Cobos

<ロト < 回 ト < 巨 ト < 巨 ト < 巨 ・ つ へ C* 30/35

Theorem

Let $p(x,\xi) \in S_{\rho,\delta}^{-\beta}(\nabla)$ with $0 \leq \delta < \rho < 1$ and $\beta < n(1-\rho)/2$. Assume that at least one of the following conditions is fulfilled:

- 1 $\rho > \frac{1}{2};$
- **2** the connection ∇ is symmetric and $\rho > \frac{1}{3}$;
- **3** the connection ∇ is flat.
- . Then p(x, D) is bounded from L^p to L^p for

$$\left|\frac{1}{p} - \frac{1}{2}\right| \leq \frac{\beta}{n(1-\rho)}$$

Relation with other global pseudodifferential calculus

In [4] Ruzhansky and Turunnen constructed a global pseudodifferential calculus for compact Lie groups using the representation theory of the group G. In this case, the pseudodifferential operators take the following form

$$Af = \sum_{[\xi]\in\widehat{G}} \dim(\xi) \operatorname{Tr}\left(\xi(x)\sigma_A(x,\xi)\widehat{f}(\xi)\right).$$

Problem: Relate the pseudodifferential calculus defined by symbols modelled on the geometric phase spaces \mathcal{T}^* , with connections, to those defined by symbols modelled on the unitary phase spaces $G \times \hat{G}$.

Relation with other global pseudodifferential calculus

In [4] Ruzhansky and Turunnen constructed a global pseudodifferential calculus for compact Lie groups using the representation theory of the group G. In this case, the pseudodifferential operators take the following form

$$Af = \sum_{[\xi]\in\widehat{G}} \dim(\xi) \operatorname{Tr}\left(\xi(x)\sigma_A(x,\xi)\widehat{f}(\xi)\right).$$

Problem: Relate the pseudodifferential calculus defined by symbols modelled on the geometric phase spaces \mathcal{T}^* , with connections, to those defined by symbols modelled on the unitary phase spaces $\mathcal{G} \times \hat{\mathcal{G}}$.

¡Thanks for your attention!

David Santiago Gómez Cobos

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Bibliography I

Fefferman, C. (1973). L^p bounds for pseudo-differential operators, Israel Journal of Mathematics, 14, 413-417.

Hormander, L. (1967). Pseudo-differential operators and hypoelliptic equations, Proc. Symposium on Singular Integrals (American Mathematical Society, vol. 10, Providence, RI 413-417.

Kohn, J., Nirenberg, L. (1965). An algebra of pseudo-differential operators, Communications on Pure and Applied Mathematics, XVIII, 269-305.

Ruzhansky, M., Turunen, V. (2010). Pseudo-Differential Operators and Symmetries: Background Analysis and Advanced Topics. Birkhäuser-Verlag, Basel.

Safarov, Y. (1997). Pseudo-differential operators and linear connections, Proc. Lond. Math. Soc. (3) 74 (2), 379-416.

Shargorodsky, E. (2002). Semi-elliptic operators generated by vector fields, Dissertationes Math. (Rozprawy Mat.) 409, 96pp.

David Santiago Gómez Cobos

<□ ▶ < @ ▶ < E ▶ < E ▶ E ∽ Q ℃ 35/35