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Motivation: Subriemannian geometry

Consider n classical particles with coordinates
{
q1, · · · , qn

}
.

Motion under constraints

H: f (q1, · · · , qn) = 0, (holonomic),

NH: f (q1, · · · , qn, q̇1, · · · , q̇n) = 0, (non-holonomic).

Exampels:

H: A particle moving along a surface, or a pendulum.

NH: Rolling of a ball on a plane (or some surface) without slipping or
twisting.

Corresponding geometric structures on a manifold

holonomic constraints −→ integrable distribution (foliation),

non-holonomic constraints −→ subriemannian manifold.
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Some Motivation
A (standard) car cannot move perpendicular to the direction of travel.
The process of parking in between two other cars requires maneuvering:

Car 1 Car 2

Possible directions of motion

Park the car

Forbidden direction of motion

Figure: Parking a car

Next: To formalize the problem we consider the car robot which moves by
roto-translation.
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Parking a car: roto-translation

y
^

ϑ

Car Robot

x

Position of the car robot in 3-space: (x , y , ϑ) ∈ R2 × S1.

Possible movements

X = cosϑ · ∂x + sinϑ · ∂y , (in direction of the car)

Y = ∂ϑ, (rotation)

Z = − sinϑ · ∂x + cosϑ · ∂y , (orthogonal to the car).
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Parkin a car: roto-translation
Connecting positions: Which movements allow to reach from any initial
position of the car any final position?

Observations

Moving only along X and Z is not enough: it keeps the angle ϑ fixed.

span
{
X ,Z

}
= kerndϑ and dϑ = closed form,

[X ,Z ] = 0.

Moving along X and Y (parking procedure) might be sufficient for
connecting positions.

span
{
X ,Y

}
= kern ω where ω = − sinϑdx + cosϑdy .

[X ,Y ] =
[
cosϑ · ∂x + sinϑ · ∂y , ∂ϑ

]
= − sinϑ · ∂x + cosϑ · ∂y = Z .
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Some Motivation: car robot
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Subriemannian Geometry

”Subriemannian geometry models motions under
non-holonomic constraints”.

Definition

A Subriemannian manifold (shortly: SR-m) is a triple (M,H, ⟨·, ·⟩) with:
M is a smooth manifold (without boundary), dimM ≥ 3 and
H ⊂ TM is a vector distribution.

H is bracket generating of rank k < dimM, i.e.

LiexH = TxM.

⟨·, ·⟩x is a smoothly varying family of inner products on Hx for x ∈ M.
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1. Example: Heisenberg group
Consider the 3- dimensional Heisenberg group H3

∼= (R3, ∗) with product:

(
x1, y1, z1

)
∗
(
x2, y2, z2

)
=

(
x1 + x2, y1 + y2, z1 + z2 +

1

2
[x1y2 − y1x2]

)
.

Lie algebra of H3:

On H3
∼= R3 define left-invariant vector fields: Let q = (x , y , z) ∈ H3:

1

[
X1f

]
(q) =

df

dt |t=0

(
q ∗ (t, 0, 0)

)
=

df

dt |t=0

(
x + t, 0, z − yt

2

)
=

[(
∂

∂x
− y

2

∂

∂z

)
f

]
(q).

Similarly, with curves (0, t, 0)t and (0, 0, t)t :

X2 =
∂

∂y
+

x

2

∂

∂z
and Z =

∂

∂z
.

1”X left-invariant”: Xg∗h = (Lg )∗Xh with the left-multiplication Lg : H3 → H3.
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Heisenberg group as SR-manifold

Known fact:

The Lie algebra (h3, [·, ·]) of H3 can be identified with:

h3 = span
{
X1,X2,Z

}
with [·, ·] = commtator of vector fields.

Observation

We calculate Lie-brackets [·, ·]. There is only one non-trivial Lie bracket
relation: [

X1,X2

]
= X1X2 − X2X1 = Z .

Put H = span{X1,X2} ⊂ TH3 (distribution),

Define ⟨·, ·⟩ on H by declaring X1 and X2 to be pointwise orthonormal.

Conclusion: (H3,H, ⟨·, ·⟩) defines a Subriemannian structure on H3.
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Heisenberg group: moving planes
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Horizontal curves and cc-distance:
On a SR-manifold (M,H, ⟨·, ·⟩) we consider horizontal objects, i.e. objects
under non-holonomic constraints.

Example

Consider a curve γ : [0, 1]→ M: a

γ is called horizontal, (a.e.) if it is tangential to H, i.e.

γ̇(t) ∈ Hγ(t).

The curve length is defined by:

ℓ(γ) :=

∫ 1

0

√〈
γ̇(t), γ̇(t)

〉
γ(t)

dt.

SR geodesic = locally length minimizing horizontal curve.

apiecewise C 1 or just absolutely continuous
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Horizontal curves
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Carnot-Carathéodory metric

Definition: Sub-Riemannian distanced (cc-distance)

The SR distance between two points a, b ∈ M is defined by:

dcc(a, b) := inf
{
ℓ(γ) : γ horizontal , γ(0) = a, γ(1) = b

}
.

Question: Let M be a connected SR-manifold. Can we connect any two
points on M by horizontal curves?

Theorem (W.-L. Chow 1939, P.-K. Rashevskii 1938)

Any two points on a connected SR-manifold can be connected by
piecewise smooth horizontal curves.
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Geodesic equations

Consequence: The cc-distance dcc
2 on a connected SR-manifold is

finite. Hence:

Lemma: The SR manifold (M, dcc) inherits the structure of a metric
space.

Recall: SR geodesic = locally length minimizing horizontal curve.

Some question:

How can we obtain Subriemannian geodesics?

Relation to dcc : can we realize the CC-distance between two point by
a (piecewise) smooth SR geodesic?

Is the distance x 7→ dcc(x0, x) smooth for fixed points x0 ∈ M?

2Carnot-Carathéodory distance
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Subriemannian geodesics on the Heisenberg group H3

Figure: SR geodesic on H3 and isoperimetric problem in the plane.
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Geodesic equations

Let (M,H, ⟨·, ·⟩) be a SR-manifold. Let[
X1, · · · ,Xm

]
= vector fields and m = rankH

be an local orthonormal frame around a point q ∈ M, i.e.

Hq = span
{
X1(q), · · · ,Xm(q)

}
and

〈
Xi (q),Xj(q)

〉
= δij .

Idea: Expand locally the derivative of a horizontal curve with respect to
the above frame
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SR-geodesics and optimal control

Observation

Let γ : [0, 1]→ M be horizontal. With suitable coefficients ui (t) one can
write

γ′(t) =
m∑
j=1

uj(t) · Xj(t) =⇒
〈
γ′(t), γ′(t)

〉
=

m∑
j=1

u2i (t).

Finding SR-geodesics between A,B ∈ M= optimal control problem OCP.

OCP: Minimize the cost

JT (u) :=
1

2

∫ T

0

√√√√ m∑
j=1

u2i (t)dt

under the conditions

γ′ =
m∑
j=1

uj · Xj(γ) and γ(0) = A, γ(T ) = B.
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SR-geodesic: a Hamiltonian formalism
Remark:

Instead of minimizing a length we may equivalently minimize an ”energy”:

OCP: Minimize the cost

JT (u) :=
1

2

∫ T

0

m∑
j=1

u2i (t)dt

under the conditions

γ′ =
m∑
j=1

uj · Xj(γ) and γ(0) = A, γ(T ) = B.

Hamiltonian formalism (as known in Riemannian geometry):

Assign a Subriemannian Hamiltonian Hsr ∈ C∞(T ∗M) to the problem:

Hsr(q, p) =
m∑
j=1

p
(
Xj(q)

)2
, where (q, p) ∈ T ∗

qM.
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SR-geodesic: a Hamiltonian formalism

With the Poisson bracket {·, ·} on C∞(T ∗M) consider:

→
Hsr =

{
·,Hsr

}
=

∂Hsr

∂p
· ∂

∂q
− ∂Hsr

∂q
· ∂

∂p
= Hamiltonian vector field.

The Hamiltonian vector field defines the geodesic flow on T ∗M and
projections of the flow to M give SR-geodesics:

Theorem (normal geodesics)

Let ζ(t) = (γ(t), p(t)) be a solution to the normal geodesic equations:

q̇i =
∂Hsr

∂pi
(q, p) and ṗi = −

∂Hsr

∂qi
(q, p), i = 1, · · · , dimM.

Then γ(t) locally minimizes the SR-distance.

Proof: 3

3R. Montgomery, A tour of Subriemannian Geometries, Their Geodesics and
Applications Math. Surveys and Monographs, 2002.
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SR-geodesics

Remark

There are various differences to the setting of a Riemannian manifold:

The Hamiltonian in Riemannian geometry can be expressed as

HR(q, p) =
n∑

i ,j=1

g ij(q)pipj , g ij := inverse metric tensor.

In SR-geometry gij is an m ×m-matrix and not invertible.

There are no 2nd order geodesic equations in the SR-setting such as

q̈k = Γkij q̇i q̇j or shortly: ∇γ̇ γ̇ = 0.

The obtained regularity of SR-geodesics is not clear.

In SR-geometry there may be singular geodesics which do not solve
the geodesic equations in the above theorem.
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Heisenberg group H3: sphere in dcc-metric.

Front of SR geodesics at time T
(picture by: U. Boscain, D. Barilari)
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Examples of SR manifolds

Lie groups: A Lie group G has trivial tangent bundle and the last
construction of a trivial bundle can be generalized:

Left-invariant structure

Let g denote the Lie algebra of G .

Let V ⊂ g be a subspace of g with inner product ⟨·, ·⟩V and

g = Lie(V ) = span
{
v , [w , x ],

[
y , [w , x ]

]
, · · · : x , y ,w ∈ V

}
.

Identify V (via left-translation) with a space of left-invariant vector
fields on G .

The G becomes a Subriemannian manifold (G ,H, ⟨·, ·⟩) with:

H = V

⟨·, ·⟩q =
〈
(dLq)

−1·, (dLq)−1·⟩V .
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Examples of SR manifolds
Contact structures Let Θ be a one-form on a manifold M of dimension
dimM = 2k + 1. Put:

Hq := kern(Θq) ⊂ TqM, (q ∈ M).

Properties

the restriction of dΘq to Hq is non-degenerate a for each q ∈ M:

If v ∈ H with dΘ(v ,w) = 0 for all w ∈ Hq, then v = 0.

equivalently: the form

ω := Θ ∧
(
dΘ

)2k ̸= 0

does not vanish at any point of M (= ω is a volume form):

aa symplectic form
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Contact manifolds

Lemma

Let Θ be a contact form on M. Then

H := ker Θ ⊂ TM

is a bracket generating distribution.

Proof: Use Cartan’s formula: With vector fields X ,Y on M:

dΘ(X ,Y ) = XΘ(Y )− YΘ(X )−Θ([X ,Y ]).

Let X ,Y be horizontal, i.e. Xq,Yq ∈ Hq = kern Θq for all q ∈ M. Then

Θ(X ) = Θ(Y ) = 0 =⇒ dΘ(X ,Y ) = −Θ
(
[X ,Y ]

)
.

Since dΘ is non-degenerate on Hq we find X ,Y with

[X ,Y ]q /∈ kernΘq = Hq.

□
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Contact manifolds (continued)
Choose an almost complex structure J : H → H such that

⟨·, ·⟩ = dΘ
(
J·, ·

)
, and J2 = −I

is an inner product on H (symmetric, positive definite).

Definition (Contact Subriemannian manifold)

The tripel (M,H, ⟨·, ·⟩) is called contact Subriemannian manifold.

Example: Consider again the Heisenberg group H3
∼= R3 with distribution:

H = span
{ ∂

∂x
− y

2

∂

∂z
,
∂

∂y
+

x

2

∂

∂z

}
= kern

(
dz − x

2
dy +

y

2
dx︸ ︷︷ ︸

=Θ

)
.

Moreover, Θ is a contact form and H3 is a contact SR-manifold:

Θ ∧ dΘ = −Θ ∧
(
dx ∧ dy

)
= −dx ∧ dy ∧ dz ̸= 0.
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Roto-translation group: How to park a car?

Possible movements

X = cosϑ · ∂x + sinϑ · ∂y , (in direction of the car)

Y = ∂ϑ, (rotation)

Z = − sinϑ · ∂x + cosϑ · ∂y , (orthogonal to the car).

Good choice:

H = span
{
X ,Y

}
= kern ω with ω = − sinϑ · dx + cosϑ · dy .

y
^

ϑ

Car Robot

x

ω∧dω = ω∧
(
− cosϑ ·dϑ∧dx − sinϑ ·dϑ∧dy

)
= −dx ∧dy ∧dϑ ̸= 0.
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Subriemannian structures of bundle type
Let (M, gM) and (N, gN) be Riemannian manifolds with Riemannian
submersion:

π : M → N.

Properties

Let q ∈ M and p = π(q) ∈ N.

kern dπq ⊂ TqM is a the space tangent to the fiber π−1(p) at q.

The restriction of the differential

dπq : Hq :=
(
kern dπq

)⊥ ⊂ TqM → TpN

is an isometry.

On H consider the restriction ⟨·, ·⟩ of the metric on TM

These data may give a SR-structure of bundle type. (Note: bracket
generating property is not clear in general and has to be checked).
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Example: Quaternionic Hopf fibration

S7

HP2

π

π: S7 S7/SU(2)=HP2 (projection)

x· SU(2)=orbit 

x

V=kern(dπ
x
)= vertical space

H
x
=kern(dπ

x
)┴= horizontal space

Quaternionic Hopf fibration: SU(2) S7 HP2
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Example: Hopf fibration
Consider the three sphere as a subset of C2:

S3 =
{
z = (z1, z2) ∈ C2 : |z1|2 + |z2|2 = 1

}
⊂ C2.

Definition (Hopf fibration)

The Hopf fibration is the submersion map

π : S3 → S21
2
: π(z) :=

1

2

(
|z1|2 − |z2|2,Re(z1z2), Im(z1z2)

)
,

where S21
2

is the 2-sphere of radius 1/2.

Theorem: The Hopf fibration defines a principal S1-bundle, where S1 acts
by componentwise multiplication on S3 ⊂ C2.

Remark: The corresponding distribution on S3 of bundle type is bracket
generating (and coincides with a contact structure on S3).
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”Why does it matter?”

Concepts of SR geometry have been around for a long time and play a role
in mathematics, physics or applied sciences:

Applications in:

classical mechanics, quantum mechanics, thermodynamics, quantum
computing

control theory

geometric structures and classifications

rolling of manifolds, falling cat problem, parking a car · · ·
vision theory

image reconstruction via hypoelliptic diffusion

PDE, analysis of hypoelliptic operators −→ this course
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Example 1: The falling cat problem and rolling manifolds

The falling cat: 

A connectivity 
problem
in SR geometry  

rolling sphere
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Example 2: curve reconstruction

How does the brain reconstruct an interrupted curve?

Interrupted curve

horizontal lift of the
interrupted curve (blue)

Solution to the minimization 
Problem (red)

Reconstructed curve

Example of countour 
Completion by the human  brain
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Summary

SR geometry models motion under non-holonomic constraints:
▶ mechanical systems,
▶ rolling of manifolds,
▶ parking a car,
▶ falling cat· · · )

Connected SR-manifolds are metric spaces with the CC-distance.

Subriemannian geodesics ←→ optimal control problem.
(Quite different behavior in comparison with geodesics in Riemannian
geometry.)

Examples include: some Lie groups, (e.g. Heisenberg group or S3),
Euclidean spheres, some principal bundles (e.g. Hopf fibration),
H-type foliations,... and much more.

SR geometry naturally appears in a wide range of problems and has
many applications (not only inside mathematics).
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Thank you for your attention!

Distribution and horizontal curve

A

B

Front of SR geodesics at time T
(picture by: U. Boscain, D. Barilari)

The falling cat: 

A connectivity 
problem
in SR geometry  
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