Popp measure and the intrinsic Sub-Laplacian

2. lecture

"Singular Integrals on nilpotent Lie groups and related topics" Summer school, Universität Göttingen

Wolfram Bauer

Leibniz Universität Hannover

Sept. 19-23, 2022

W. Bauer (Leibniz Universität Hannover) Popp measure and intrinsic Sub-Laplacian Sept. 19-23, 2022 1/44

Outline

- 1. From the Riemannian to the Subriemannian Laplacian
- 2. Nilpotentization and Popp measure
- 3. Subriemannian isometries
- 4. Sub-Laplacian on nilpotent Lie groups

Subriemannian Geometry (Reminder from the 1. talk)

"Subriemannian geometry models motions under non-holonomic constraints".

Definition

A Subriemannian manifold (shortly: SR-m) is a triple $(M, \mathcal{H}, \langle \cdot, \cdot \rangle)$ with:

- M is a smooth manifold (without boundary), dim $M \ge 3$ and $\mathcal{H} \subset TM$ is a vektor distribution.
- \mathcal{H} is bracket generating of rank $k < \dim M$, i.e.

$$Lie_{x}\mathcal{H} = T_{x}M$$

• $\langle \cdot, \cdot \rangle_x$ is a smoothly varying family of inner products on \mathcal{H}_x for $x \in M$.

Question: Can we assign "geometric operators" to such a structure similar to the Laplacian in Riemannian geometry?

W. Bauer (Leibniz Universität Hannover) Popp measure and intrinsic Sub-Laplacian Sept. 19-23, 2022 3 / 44

Regular Distribution

Let $\mathcal{H} \subset TM$ denote a distribution on M. Define vector spaces depending on $q \in M$:

$$\mathcal{H}^1 := \mathcal{H}, \quad \text{and} \quad \mathcal{H}^{r+1} := \mathcal{H}^r + [\mathcal{H}^r, \mathcal{H}],$$

where

$$\left[\mathcal{H}^{r},\mathcal{H}
ight]_{q}:= ext{span}igg\{\left[X,Y
ight]_{q}\ :\ X\in\mathcal{H}^{r}\ ext{and}\ Y\in\mathcal{H}igg\}.$$

This gives a flag of vector spaces

$$\mathcal{H}_q = \mathcal{H}_q^1 \subset \mathcal{H}_q^2 \subset \cdots \subset \mathcal{H}_q^r \subset \mathcal{H}_q^{r+1} \subset \cdots T_q M$$

Remark: \mathcal{H} bracket generating: $\forall q \in M, \exists \ell_q \in \mathbb{N}$ with $\mathcal{H}_q^{\ell_q} = \mathcal{T}_q M$.

Definition

 \mathcal{H} is called regular, if the dimensions dim \mathcal{H}_q^r are independent of $q \in M$.

Ex: The 3-dimensional Heisenberg group \mathbb{H}_3 is regular as a SR manifold.

A non-regular distribution, (Martinet distribution) **Example:** A distribution which is not regular across a line: On $M = \mathbb{R}^3$ with coordinates q = (x, y, z) consider the vector fields:

$$X := \frac{\partial}{\partial x} + \frac{y^2}{2} \frac{\partial}{\partial z}$$
 and $Y := \frac{\partial}{\partial y}$.

Then we have the Lie bracket:

$$[X,Y] = -y\frac{\partial}{\partial z}.$$

Therefore:

$$\mathcal{H}_q^2 = \operatorname{span}\left\{X, Y, y \frac{\partial}{\partial z}\right\} \implies \mathcal{H}_{(x,0,z)}^2 = \operatorname{span}\left\{\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right\}.$$

Observe: The dimension of \mathcal{H}_q^2 "jumps" at a hyperplane:

$$\dim \mathcal{H}^2_q = egin{cases} 2, & ext{if } y = 0, \ 3, & ext{if } y
eq 0. \end{cases}$$

W. Bauer (Leibniz Universität Hannover) Popp measure and intrinsic Sub-Laplacian Sept. 19-23, 2022

From Riemannian to the Subriemannian Laplacian

Goal: In analogy to the Laplace operator in Riemannian geometry we want to assign a Sub-Laplace operator to the Subriemannian structure.

1. Recall the definition of the Beltrami-Laplace operator:

Let (M, g) be an oriented Riemannian manifold with dim M = n and let $[X_1, \dots, X_n]$ be a local orthonormal frame around a point $q \in M$.

Definition

The Riemannian volume form ω is defined through the requirement:

$$\omega(X_1,\cdots,X_n)=1.$$

Or in coordinates:

$$\omega = \sqrt{\det(g_{ij})} \ dx_1 \wedge \dots \wedge dx_n \quad \text{ where } \quad g_{ij} = g\big(\partial_i, \partial_j\big), \ \partial_i := \frac{\partial}{\partial x_i}.$$

Define the Beltrami-Laplace operator by: $\Delta = \operatorname{div}_{\omega} \circ \operatorname{grad}$.

5 / 44

The Sub-Laplacian

Analogously to the definition of the Laplace operator we assign a differential operator to a SR- manifold with regular distribution \mathcal{H} .

We need two ingredients, namely:

- a SR gradient,
- a SR divergence.

Horizontal gradient and ω -divergence

Let ω be a smooth measure, X a vector field on M and $\varphi \in C^{\infty}(M)$: ^a

$$\mathcal{L}_{X}(\omega) = \operatorname{div}_{\omega}(X) \omega \qquad (\omega \text{-divergence})$$

$$\left\langle \underbrace{\operatorname{grad}}_{\mathcal{H}(\varphi)}, v \right\rangle_{q} = d\varphi(v), \quad v \in \mathcal{H}_{q} \qquad (\text{horizontal gradient}).$$

These equations - together with the horizontality condition of the gradient - define $\operatorname{div}_{\omega}(X)$ and $\operatorname{grad}_{\mathcal{H}}(\varphi)$.

 ${}^{a}\mathcal{L}_{X} = \iota_{X} \circ d + d \circ \iota_{X}.$

W. Bauer (Leibniz Universität Hannover) Popp measure and intrinsic Sub-Laplacian Sept. 19-23, 2022 7/44

Sub-Laplacian

Definition

The Sub-Laplacian on a SR-manifold $(M, \mathcal{H}, \langle \cdot, \cdot \rangle)$ associated to a smooth volume ω is defined by

$$\Delta_{\mathsf{sub}} := \mathsf{div}_\omega \circ \mathsf{grad}_\mathcal{H}.$$

Consider a local orthonormal frame for \mathcal{H}

$$[X_1, \cdots, X_m]$$
 with $m \leq n = \dim M$.

Similar to the Laplacian we can express Δ_{sub} in the form:

$$\Delta_{\mathsf{sub}} = \sum_{i=1}^{m} \Big[X_i^2 + \mathsf{div}_{\omega}(X_i) \cdot X_i \Big].$$

The Sub-Laplacian

Theorem

The SR Laplacian Δ_{sub} associated to a smooth measure ω is negative, symmetric and, if M is compact, essentially self-adjoint on the space $C_c^{\infty}(M) \subset L^2(M)$.

Proof: (1. statement) Let $f \in C_c^{\infty}(M)$ and let X be a vector field on M. One shows:

$$\int_{M} f \cdot \underbrace{\operatorname{div}_{\omega}(X) \, \omega}_{=\mathcal{L}_{X}(\omega)} = - \int_{M} X(f) \, \omega = - \int_{M} df(X) \, \omega.$$

Choose $X = \operatorname{grad}_{\mathcal{H}}(g)$ with $g \in C_c^{\infty}(M)$. Symmetry and negativity follow:

$$\int_{M} f \cdot (\Delta_{sub}g) \omega = - \int_{M} \langle \operatorname{grad}_{\mathcal{H}} f, \operatorname{grad}_{\mathcal{H}} g \rangle \omega.$$

Essentially selfadjointness needs more work.

W. Bauer (Leibniz Universität Hannover) Popp measure and intrinsic Sub-Laplacian Sept. 19-23, 2022 9/44

Nilpotentization and Popp measure

Question: How to choose the smooth measure ω in the ω -divergence when defining the sub-Laplacian

$$\Delta_{\mathsf{sub}} := \mathsf{div}_{\boldsymbol{\omega}} \circ \mathsf{grad}_{\mathcal{H}}?$$

Assumption: Let $(M, \mathcal{H}, \langle \cdot, \cdot \rangle)$ be a regular subriemannian manifold.

Consider again the flag induced by the bracket generating distribution \mathcal{H} :

$$\mathcal{H} = \mathcal{H}^1 \subset \mathcal{H}^2 \subset \cdots \subset \mathcal{H}^r \subset \mathcal{H}^{r+1} \subset \cdots$$

Reminder: dim \mathcal{H}_q^r for all r are independent of $q \in M$, where:

 $\begin{aligned} \mathcal{H}^{1} &:= \mathcal{H} = "sheave of smooth horizontal vector fields", \\ \mathcal{H}^{r+1} &:= \mathcal{H}^{r} + \big[\mathcal{H}^{r}, \mathcal{H}\big], \end{aligned}$

with

$$\left[\mathcal{H}^{r},\mathcal{H}
ight]_{q}= ext{span}igg\{ig[X,Yig]_{q}\ :\ X\in\mathcal{H}^{r}\ ext{and}\ Y\in\mathcal{H}ig\}.$$

Nilpotentization

For each $q \in M$ we obtain a direct sum of vector spaces:

$$gr(\mathcal{H})_q = \mathcal{H}_q \oplus \mathcal{H}_q^2 / \mathcal{H}_q \oplus \cdots \oplus \mathcal{H}_q^r / \mathcal{H}_q^{r-1}$$

= nilpotentization.

Observations:

(a) Lie brackets of vector fields on the manifold M induce a Lie algebra structure on $gr(\mathcal{H})_q$ such that

$$v \in \mathcal{H} \text{ and } w \in \mathcal{H}_q^j/\mathcal{H}_q^{j-1} \implies [v,w] \in \mathcal{H}_q^{i+1}/\mathcal{H}_q^i.$$

(b) The Lie algebra in (a) is nilpotent, i.e. there is $n \in \mathbb{N}$ such that:

$$\left[X_1[X_2\cdots[X_n,X]\cdots]\right]=0, \quad \forall X_1,\cdots,X_n, X\in\mathfrak{g}. \quad (*)$$

The minimal *n* in (b) is called the step of the nilpotent Lie algebra. **Example:** The step of the nilpotentization $gr(\mathcal{H})_q$ is *r*.

Popp measure: construction in the case r = 2

- $(M, \mathcal{H}, \langle \cdot, \cdot \rangle) =$ regular SR manifold. Let r = 2 and $q \in M$.
- **1.** step: Let $v, w \in \mathcal{H}_q$ and V, W be horizontal vector fields near p with:

$$V(q) = v$$
 and $W(q) = w$.

Consider the map

 $\pi: \mathcal{H}_{q} \otimes \mathcal{H}_{q} \to \mathcal{H}_{q}^{2}/\mathcal{H}_{q}: \pi(v \otimes w) := \left[V, W\right]_{q} \operatorname{mod} \mathcal{H}_{q}.$

Some properties of π :

- π is surjective,
- the inner product on H_q induces an inner product on the Hilbert space tensor product H_q ⊗ H_q.

Question: Is the map π well-defined?

With horizontal vector fields V and W with $V_q = v$ and $W_q = w$:

$$\pi: \mathcal{H}_{q} \otimes \mathcal{H}_{q} \to \mathcal{H}_{q}^{2}/\mathcal{H}_{q}: \pi(v \otimes w) := \left[V, W\right]_{q} \operatorname{mod} \mathcal{H}_{q}.$$

Lemma

The map π is independent of the choice of V and W.

Proof: Let \widetilde{V} and \widetilde{W} be different horizontal extensions of v and w, i.e.

$$\widetilde{V}_p, \widetilde{W}_p \in \mathcal{H}_p \quad \forall \ p \in U_q, \quad and \quad \widetilde{V}_q = v, \ \widetilde{W}_q = w.$$

With a local frame $[X_1, \dots, X_m]$ of \mathcal{H} we can write:

$$\widetilde{V} = V + \sum_{i=1}^{m} f_i X_i$$
 and $\widetilde{W} = W + \sum_{i=1}^{m} g_i X_i$,

where $f_i, g_i \in C^{\infty}(M)$ fulfill $f_i(q) = g_i(q) = 0$.

W. Bauer (Leibniz Universität Hannover) Popp measure and intrinsic Sub-Laplacian Sept. 19-23, 2022 13/44

Proof: (continued)

We form Lie brackets:

$$\begin{bmatrix} \widetilde{V}, \widetilde{W} \end{bmatrix} = \begin{bmatrix} V + \sum_{i=1}^{m} f_i X_i, W + \sum_{j=1}^{m} g_j X_j \end{bmatrix}$$
$$= \begin{bmatrix} V, W \end{bmatrix} + \sum_{j=1}^{m} \begin{bmatrix} V, g_j X_j \end{bmatrix} - \begin{bmatrix} W, f_j X_j \end{bmatrix} + \sum_{i,j=1}^{m} \begin{bmatrix} f_i X_i, g_j X_j \end{bmatrix} = (*).$$

Use the rule:

$$\left[V,g_{j}X_{j}\right]=V(g_{j})X_{j}+g_{j}\left[V,X_{j}\right]$$

to obtain $[f_iX_i, g_jX_j]_q = f_i(q)X_i(g_j)_q(X_j)_q + g_j(q)[f_iX_i, X_j]_q = 0$ and

$$\left[\widetilde{V},\widetilde{W}\right]_q = [V,W]_q + \sum_{j=1}^m \left(V(g_j) - W(f_j)\right)(X_j)_q = \left[V,W\right]_q \mod \mathcal{H}_q.$$

This proves the statement.

 \square

Summary

Consider the map

$$\pi: \mathcal{H}_q \otimes \mathcal{H}_q \to \mathcal{H}_q^2/\mathcal{H}_q: \pi(v \otimes w) := [V, W]_q \mod \mathcal{H}_q.$$

Some properties of π :

- π is surjective,
- the inner product on \mathcal{H}_q induces an inner product on $\mathcal{H}_q \otimes \mathcal{H}_q$.
- Finally:

 $\mathcal{H}_q^2/\mathcal{H}_q \cong \operatorname{kern}(\pi)^{\perp} \subset \mathcal{H}_q \otimes \mathcal{H}_q.$

Consequence: The inner product on \mathcal{H}_q induces a inner product on:

$$\operatorname{gr}(\mathcal{H})_q = \mathcal{H}_q \oplus \mathcal{H}_q^2/\mathcal{H}_q = \operatorname{nilpotentization}.$$

This inner product induces a canonical volume form, i.e. an element ¹

$$\mu_q \in \Lambda^n \operatorname{gr}(\mathcal{H})_q^* \cong (\Lambda^n \operatorname{gr}(\mathcal{H})_q)^*.$$

¹("Wedge" elements of an orthonormal basis). W. Bauer (Leibniz Universität Hannover) Popp measure and intrinsic Sub-Laplacian Sept. 19-23, 2022 15/44

Definition: Popp measure (r = 2)2. step: We need to produce a volume form on M itself. Let $n = \dim M$. Then there is a canonical isomorphism

$$\Theta_q: \Lambda^n(T_qM) o \Lambda^n \operatorname{gr}(\mathcal{H})_q.$$

Explicitly:

Let v_1, \dots, v_n be a basis of $T_q M$ s. t. v_1, \dots, v_m is a basis of \mathcal{H}_q . Put

$$\Theta_q(v_1\wedge\cdots\wedge v_n):=v_1\wedge\cdots\wedge v_m\widehat{\otimes}(v_{m+1}+\mathcal{H}_q)\wedge\cdots\wedge (v_n+\mathcal{H}_q).$$

Then Θ_q is independent of the choice of such basis.

Definition: Popp measure

With the volume form $\mathcal{P}_q := \Theta_q^*(\mu_q) = \mu_q \circ \Theta_q \in (\Lambda^n T_q M)^*$ we form

$$\mathcal{P} \in \Omega^n(M) = Popp$$
 measure.

Remark: \mathcal{P} generalizes to SR-structures of arbitrary step r > 0.

Intrinsic Sub-Laplacian

Let $(M, \mathcal{H}, \langle \cdot, \cdot \rangle)$ be a regular SR-manifold with Popp measure \mathcal{P} .

Definition The intrinsic Sub-Laplacian on M is the one associated to the Popp measure \mathcal{P} :

 $\Delta_{\mathcal{P}} = \mathsf{div}_{\mathcal{P}} \circ \mathsf{grad}_{\mathcal{H}}.$

W. Bauer (Leibniz Universität Hannover) Popp measure and intrinsic Sub-Laplacian

Sept. 19-23, 2022

17 / 44

1. Example: Martinet distribution

Consider the Martinet distribution on \mathbb{R}^3 :

Define vector fields:

$$X := \frac{\partial}{\partial x} + \frac{y^2}{2} \frac{\partial}{\partial z}, \quad Y := \frac{\partial}{\partial y} \quad and \quad Z = \frac{\partial}{\partial z}$$

Consider the following distribution: With $q \in \mathbb{R}^3$ put:

$$\mathcal{H}_q := \operatorname{span}\left\{X_q, Y_q
ight\}$$

= kern (Θ_q) where $\Theta = dz - rac{y^2}{2}dx$

= Martinet distribution.

- An inner product on \mathcal{H}_q is defined by declaring X_q and Y_q orthonormal.
- bracket relations:

$$[X, Y] = -yZ$$
 and $[Y, [X, Y]] = -Z.$

1. Example: Martinet distribution (continued)

The Martinet distribution ${\mathcal H}$ is

- bracket generating on \mathbb{R}^3 and of step 3 if y = 0,
- regular of step 2 restricted to

$$M_{y\neq 0} := \{(x, y, z)^t : y \neq 0\}.$$

Popp measure on $M_{y\neq 0}$: Consider the map:

$$\pi: \mathcal{H}_q \otimes \mathcal{H}_q \to \mathcal{H}_q^2/\mathcal{H}_q: \pi(\mathsf{v} \otimes \mathsf{w}) := [X, Y]_q \bmod \mathcal{H}_q,$$

where $v = X_q$ and $w = Y_q$. Then:

$$(\ker \pi)^{\perp} = \operatorname{span} \left\{ X \otimes X, Y \otimes Y, \frac{1}{\sqrt{2}} (X \otimes Y + Y \otimes X) \right\}^{\perp}$$
$$= \operatorname{span} \left\{ \frac{1}{\sqrt{2}} (X \otimes Y - Y \otimes X) \right\}.$$

W. Bauer (Leibniz Universität Hannover) Popp measure and intrinsic Sub-Laplacian Sept. 19-23, 2022

1. Example: Martinet distribution (continued) Using [X, Y] = -yZ we find:

$$\frac{1}{\sqrt{2}}\pi \Big[X \otimes Y - Y \otimes X \Big] = \sqrt{2} \cdot [X, Y] + \mathcal{H}_q$$
$$= -\sqrt{2}yZ + \mathcal{H}_q.$$

This induces an inner product norm on $\mathcal{H}_q^2/\mathcal{H}_q = \operatorname{span}\{Z\} + \mathcal{H}_q$ via:

$$\|Z + \mathcal{H}_q\|_q = \frac{1}{\sqrt{2}|y|}$$

Take the dual basis to $[X, Y, \sqrt{2}|y|Z]$ which is

$$\Big[X^* = dx, Y^* = dy, (\sqrt{2}|y|Z)^* = (\sqrt{2}|y|)^{-1}(dz - \frac{y^2}{2}dx)\Big].$$

Popp measure:

$$\mathcal{P} = X^* \wedge Y^* \wedge (\sqrt{2}|y|Z)^* = rac{1}{\sqrt{2}|y|} dx \wedge dy \wedge dz.$$

19 / 44

Intrinsic Sub-Laplacian for the Martinet distribution

Knowing the Popp measure, we can calculate the intrinsic Sub-Laplacian

$$\Delta_{\mathsf{sub}} = \mathsf{div}_{\mathcal{P}} \circ \mathsf{grad}_{\mathcal{H}} \quad on \quad M_{\nu \neq 0} \subset \mathbb{R}^3.$$

Recall the following explicit expression:

$$\Delta_{\mathsf{sub}} = X^2 + Y^2 + \mathsf{div}_{\mathcal{P}}(X) X + \mathsf{div}_{\mathcal{P}}(Y) Y.$$

Note that

$$div_{\mathcal{P}}(X) \cdot \mathcal{P} = \mathcal{L}_X \mathcal{P} = d(\iota_X \mathcal{P}) = d\left(\frac{1}{\sqrt{2}|y|}dy \wedge dz\right) = \mathbf{0} \cdot \mathcal{P},$$

$$div_{\mathcal{P}}(Y) \cdot \mathcal{P} = \mathcal{L}_Y \mathcal{P} = d(\iota_Y \mathcal{P}) = -d\left(\frac{1}{\sqrt{2}|y|}dx \wedge dz\right) = -\frac{1}{y} \cdot \mathcal{P}.$$

Intrinsic Sub-Laplacian

The intrinsic Sub-Laplacian becomes singular at the y = 0 - surface.

$$\Delta_{\mathsf{sub}} = X^2 + Y^2 - \frac{1}{y} Y.$$

W. Bauer (Leibniz Universität Hannover) Popp measure and intrinsic Sub-Laplacian

Popp measure and local isometries

Riemannian isometry: *diffeomorphism* with differential being an isometry for the Riemannian metric.

Definition (volume preserving transformation)

Let *M* be a manifold and $\mu \in \Omega^n(M)$ a volume form. A diffeomorphism $\Phi: M \to M$ is a volume preserving transformation if

 $\phi^*\mu=\mu.$

Standard fact:

Riemannian isometries are volume preserving transformation for the standard Riemannian volume ω .

Question: Is there an analogous statement in the case of a SR manifold and the Popp measure?

Sept. 19-23, 2022

Sept. 19-23, 2022

21 / 44

Subriemannian isometries

Let $(M, \mathcal{H}, \langle \cdot, \cdot \rangle)$ be a SR manifold and

$$\Phi: M \to M \tag{(*)}$$

a diffeomorphism.

Definition

The map (*) is called isometry, if its differential Φ_* : $TM \to TM$ preserves the SR structure, i.e.

- $\Phi_*(\mathcal{H}_q) = \mathcal{H}_{\Phi(q)}$ for all $q \in M$,
- For all $q \in M$ and all horizontal vector fields X, Y:

$$\langle \Phi_* X, \Phi_* Y \rangle_{\Phi(q)} = \langle X, Y \rangle_q.$$

We write lso(M) for the group of all isometries on the SR manifold M.

Popp volume and isometries

Theorem (D. Barilari, L. Rizzi, 2012)

Let $(M, \mathcal{H}, \langle \cdot, \cdot \rangle)$ be a regular SR manifold.

- (a) SR isometries are volume preserving for Popp's volume.
- (b) If Iso(M) acts transitively, then Popp's volume is the unique volume (up to multiplication by a constant) with (a).

Example

Let M = G be a Lie group with a left-invariant SR-structure. Then the left-translation

$$L_g: G \to G: h \mapsto L_g h = g * h$$

obviously defines a SR isometry.

The Sub-Laplacian on nilpotent Lie groups

Carnot group

A Carnot group is a connected, simply connected Lie group G, with Lie algebra \mathfrak{g} allowing a stratification

$$\mathfrak{g}=V_1\oplus\cdots\oplus V_r.$$

Moreover, the following bracket relations hold:

$$egin{aligned} [V_1,V_j] &= V_{j+1}, & j = 1, \cdots, r-1, \ [V_j,V_r] &= \{0\}, & j = 1, \cdots, r. \end{aligned}$$

In particular \mathfrak{g} is nilpotent of step r.

Example: Let \mathfrak{h}_3 be the Heisenberg Lie algebra. Then

 $\mathfrak{h}_3 = \operatorname{span}\{X, Y\} \oplus \operatorname{span}\{Z\},$

where [X, Y] = Z. This is a 2-step case. W. Bauer (Leibniz Universität Hannover) Popp measure and intrinsic Sub-Laplacian

Sept. 19-23, 2022

25 / 44

Carnot group

Reminder (Lie's fundamental Theorem):

Corollary

For every finite dimensional Lie algebra \mathfrak{g} over \mathbb{R} there is a connected, simply connected Lie group G which a Lie algebra isomorphic to \mathfrak{g} . Moreover, G is unique up to isomorphisms.

This leads to the notion of Carnot group.

Definition

Let \mathfrak{g} be a Carnot Lie algebra. The connected, simply connected Lie group G (up to isomorphisms) with Lie algebra \mathfrak{g} is called Carnot group.

Remark: If \mathfrak{g} has step r, we call the Carnot group G of step r.

Example: Engel group

Consider the Engel group $\mathcal{E}_4 \cong \mathbb{R}^4$ as a matrix group:

$$\mathcal{E}_4 = \left\{ \left(\begin{array}{cccc} 1 & x & \frac{x^2}{2} & z \\ 0 & 1 & x & w \\ 0 & 0 & 1 & y \\ 0 & 0 & 0 & 1 \end{array} \right) \ : \ x, y, w, z \in \mathbb{R} \right\} \subset \mathbb{R}^{4 \times 4}.$$

Then \mathcal{E}_4 has the Lie algebra \mathfrak{e}_4 with non-trivial bracket relations:

$$[X, Y] = W$$
 und $[X, \underbrace{[X, Y]}_{=W}] = Z$

and stratification

$$\mathfrak{e}_4 = \operatorname{span}\{X, Y\} \oplus \operatorname{span}\{W\} \oplus \operatorname{span}\{Z\}.$$

Nilpotent approximation

Let $(M, \mathcal{H}, \langle \cdot, \cdot)$ be a regular SR manifold. Let $q \in M$ and recall:

$$gr(\mathcal{H})_q = \mathcal{H}_q \oplus \mathcal{H}_q^2 / \mathcal{H}_q \oplus \cdots \oplus \mathcal{H}_q^r / \mathcal{H}_q^{r-1}$$

= nilpotentization.

Observations:

- Already discussed: Lie brackets of vector fields on *M* induce a Lie algebra structure on gr(*H*)_q. (respecting the grading).
- Let Gr(H)_q denote the connected, simply connected nilpotent Lie group with Lie algebra gr(H)_q.
- The space $\mathcal{H}_q \subset \operatorname{gr}(\mathcal{H})_q$ induces for each $q \in M$ a (left-invariant) SR structure on the group $\operatorname{Gr}(\mathcal{H})_q$ (Example of talk 1).

Definition

The group $Gr(\mathcal{H})_q$ with the induced SR structure is called nilpotent approximation of the SR manifold M at $q \in M$.

Nilpotent approximation

Conclusion:

Carnot groups seem to be a local model of the SR manifold. It may be helpful to first study the Sub-Laplacian and subelliptic heat flow there.

Question What is the intrinsic Sub-Laplacian on a Carnot group or (more generally) on any nilpotent Lie group?

Exponential coordinates: Let (G, *) be a connected, simply connected nilpotent Lie group of dimension dim G = n and with Lie algebra \mathfrak{g} . Then

 $\exp:\mathfrak{g}\to G$

is a diffeomorphism. Hence we can pullback the product on G to $\mathfrak{g} \cong \mathbb{R}^n$ via exp (exponential coordinates).

Exponential coordinates

We have an identification:

$$(G,*)\cong (\mathfrak{g}\cong \mathbb{R}^n,\circ),$$

where

$$g \circ h := \log \Big(\exp(g) * \exp(h) \Big), \quad ext{ for all } g, h \in \mathfrak{g}.$$

Baker-Campbell-Hausdorff formula
Let
$$g, h \in \mathfrak{g}$$
, then
 $\exp(g) * \exp(h) =$
 $= \exp\left(g + h + \frac{1}{2}[g, h] + \frac{1}{12}[g, [g, h]] - \frac{1}{12}[h, [g, h]] \mp \cdots\right)$
Note: if \mathfrak{g} is nilpotent, then the sum in the exponent is always finite.

Sept. 19-23, 2022

29 / 44

Exponential coordinates

Using this formula above gives:

$$g \circ h = g + h + \frac{1}{2}[g, h] + \frac{1}{12}[g, [g, h]] - \frac{1}{12}[h, [g, h]] \mp \cdots$$
 (finite).

Example
Consider the case
$$r = \text{step } \mathfrak{g} = 2$$
 and choose a decomposition
 $\mathfrak{g} = V_1 \oplus V_2$
such that
 $[V_1, V_1] = V_2 \text{ and } [V_1, V_2] = [V_2, V_2] = 0.$
Consider the SR structure on $\mathfrak{g} \cong G$ defined by:
 $\mathcal{H} = V_1 = \text{"left-invariant vector fields."}$

W. Bauer (Leibniz Universität Hannover)Popp measure and intrinsic Sub-LaplacianSept. 19-23, 202231 / 44

Sub-Laplacian on nilpotent Lie groups

Example (continued)

Consider an inner product $\langle \cdot, \cdot \rangle$ on V_1 and chose an orthonormal basis:

$$[X_1, \cdots, X_m] =$$
 "orthonormal basis of V_1 ".

Chose a basis $[Y_{m+1}, \dots, Y_n]$ of V_2 . Then there are structure constants c_{ij}^k such that

$$[X_i, X_j] = \sum_{\ell=m+1}^n c_{ij}^{\ell} Y_{\ell}, \quad [X_i, Y_{\ell}] = 0 = [Y_{\ell}, Y_h].$$

This choice of basis gives a concrete identification $\mathfrak{g} \cong \mathbb{R}^n$.

Goal: Calculate the left-invariant vector fields corresponding to the basis elements X_i explicitly in coordinates of \mathbb{R}^n .

Sub-Laplacian on nilpotent Lie groups

Sub-Laplacian on nilpotent Lie groups

Example (continued)

We can identify $X_i \in V_1 \subset \mathfrak{g}$ with the following left-invariant vector field on $G \cong \mathbb{R}^n$:

$$\widetilde{X}_i := \frac{\partial}{\partial x_i} - \frac{1}{2} \sum_{j=1}^m \sum_{\ell=m+1}^n x_j c_{ij}^{\ell} \frac{\partial}{\partial y_{\ell}}.$$

Observations:

• the coefficients in front of $\frac{\partial}{\partial x_i}$ is one for $i = 1, \dots, m$,

• in the double sum the variable x_i does not appear ($c_{ii}^{\ell} = 0$ for all ℓ). Let $\mathcal{P} = \text{Lebesgue measure}$ be the Popp measure on $G \cong \mathbb{R}^n$.

Goal: Calculate the \mathcal{P} -divergence of X_i for $i = 1, \cdots, m$:

From the above observations:

$$\mathcal{L}_{\widetilde{X}_{i}}\left(dx_{1}\wedge\cdots\wedge dx_{m}\wedge dy_{m+1}\wedge\cdots\wedge dy_{n-m}\right)=d\circ\iota_{\widetilde{X}_{i}}\mathcal{P}=d\left(\mathcal{P}(\widetilde{X}_{i},\cdot)\right)=0.$$

Therefore $\operatorname{div}_{\mathcal{P}}(X_i) = 0$ for all $i = 1, \cdots, m$.

Sept. 19-23, 2022

Sub-Laplacian on nilpotent Lie groups

Example (continued)

Conclusion: In the above example of a step-2 nilpotent Lie group we have found:

$$\Delta_{\mathsf{sub}} = \sum_{i=1}^{m} \left[\widetilde{X}_i^2 + \underbrace{\mathsf{div}_{\omega}(X_i)}_{=0} X_i \right] = \sum_{i=1}^{m} \widetilde{X}_i^2.$$

Hence, the intrinsic sub-Laplacian has no first order terms. We say:

 $\Delta_{sub} = sum$ -of-squares-operator.

W. Bauer (Leibniz Universität Hannover) Popp measure and intrinsic Sub-Laplacian

Sept. 19-23, 2022

35 / 44

Hypoellipticity

Theorem (L. Hörmander, 1967)
Let
$$\Omega \subset \mathbb{R}^n$$
 be open. Consider C^{∞} - vector fields $[X_0, \dots, X_m]$ with
rank Lie $[X_0, \dots, X_m] = n$, $x \in \Omega$ (Hörmander condition).
The differential operator \mathcal{L} is hypoelliptic:
 $\mathcal{L} := \sum_{i=1}^m X_j^2 + X_0 + c$ $c \in C^{\infty}(\Omega)$.

Remarks

• An operator *P* is called hypoelliptic if

$$Pu = f$$
 with $f, u \in \mathcal{D}'(\Omega)$

implies: Let $\Omega_0 \overset{\text{open}}{\subset} \Omega$ and $f \in C^{\infty}(\Omega_0)$, then $u \in C^{\infty}(\Omega_0)$.

• The hypoellipticity statement in the Hörmander's Theorem follows from subelliptic estimates:

$$\|u\|_{s-\delta} \leq C_D(\|Au\|_s + \|u\|_0), \qquad u \in C_0^{\infty}(D)$$

bounded domain

• In particular, elliptic operators (e.g. the Laplace operator on a Riemannian manifold) are hypoelliptic (elliptic regularity).

Hörmander theorem: the version on manifolds

Theorem (L. Hörmander, 1967)

Let \mathcal{L} be a differential operator on a manifold M, that locally in a neighborhood U of any point is written as

$$\mathcal{L} = \sum_{i=1}^{m} X_i^2 + X_0,$$

where X_0, X_1, \cdots, X_m are C^{∞} - vector fields with

$$\operatorname{Lie}_{q}\left\{X_{0}, X_{1}, \cdots, X_{m}\right\} = T_{q}M \quad \forall \ q \in U.$$

Then \mathcal{L} is hypoelliptic. In particular:

The intrinsic sub-Laplacian on a SR-manifold M is hypoelliptic.

Example: Kolmogorov operator

At the beginning of the 20th century:

A prototype of a kind of operator studied by A. N. Kolmogorov in relation with diffusion phenomena is the following:

Example: Kolmogorov operator (proto-type)

$$K = \sum_{j=1}^{n} \partial_{x_j}^2 + \sum_{j=1}^{n} x_j \partial_{y_j} - \partial_t, \quad mit \quad (x, y, t) \in \mathbb{R}^{2n+1}$$
"sum of squares + a first order term.
x= velocity and y:=position.

Operator with non-negative degenerate characteristic form.

References

 A. Agrachev, U. Boscain, J.-P. Gauthier, F. Rossi, The intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups, J. Funct. Anal. 256 (2009), 2621-2655.
 D. Barilari, L. Rizzi, A formula for Popp's volume in Subriemannian geometry, AGMS 2013, 42-57.
 W. Bauer, K. Furutani, C. Iwasaki, Sub-Riemannian structures in a principal bundle and their Popp measures, Appl. Anal. 96 (2017), no. 14, 2390-2407.
 R. Montgomery, A tour of Subriemannian Geometries, Their Geodesics and Applications, Mathematical Surveys and Monographs, 91 2002.

Thank you for your attention!

Distribution and horizontal curve

Front of SR geodesics at time T (picture by: U. Boscain, D. Barilari)

W. Bauer (Leibniz Universität Hannover) Popp measure and intrinsic Sub-Laplacian

an S

Sept. 19-23, 2022

41 / 44

Appedix: The Hausdorff volume and Popp volume

Question: How to choose the smooth measure ω in the ω -divergence?

Requirement

If we would like to have a "geometric operator" such measure should only depend on the internal data of the SR-structure.

Possible candidates:

- The Hausdorff measure of (M, d_{cc}) ? (next slides)
- The Popp measure on *P* (next slides). This measure is a-priori smooth by construction.

Remark

- Maybe both measures coincide?
- If we have a "canonical measure" ω we may consider the sub-Riemannian heat equation:

$$\partial_t - \Delta_{sub} = 0$$

and study its geometric significance in comparison with the Riemannian setting.

Hausdorff measure

Let (M, d) be a metric space and $\Omega \subset M$. Let

- ε, *s* > 0,
- $\{U_{\alpha}\}_{\alpha}$ a covering of Ω by open sets.

Consider:

$$\mu_{\varepsilon}^{s}(\Omega) := \inf \Big\{ \sum_{\alpha} \big[\operatorname{diam} U_{\alpha} \big]^{s} : \forall \alpha : \operatorname{diam} U_{\alpha} < \varepsilon \Big\}.$$

Hausdorff measure

The value

$$\mu^{s}(\Omega) := \lim_{\varepsilon \to 0} \mu^{s}_{\varepsilon}(\Omega) \in [0,\infty) \cup \{\infty\}$$

is called *s*-dimensional Hausdorff measure of Ω .

Proposition: There is a unique value Q, the Hausdorff dimension of Ω , with $\mu^{s}(\Omega) = \infty$ for s < Q and $\mu^{s}(\Omega) = 0$ for s > Q.

W. Bauer (Leibniz Ur	niversität Hannover)	Popp measure and intrinsic Sub-Laplacian	Sept. 19-23, 2022	43 / 44
----------------------	-----------------------	--	-------------------	---------

Hausdorff measure

Let $(M, \mathcal{H}, \langle \cdot, \cdot \rangle)$ be a Sub-Riemannian manifold. Then (M, d_{cc}) is a metric space with:

$$d_{cc}(A,B) = \inf \left\{ L_{SR}(\gamma) : \gamma(0) = A \quad \gamma(1) = B, \quad \gamma \text{ horizontal} \right\}$$

$$\stackrel{SR- \text{ length of } \gamma}{= Carnot-Carathéodory \ distance \ on \ M.}$$

Definition

Let μ_{Haus}^{Q} be the Hausdorff measure of the metric space (M, d_{cc}) .

Problem:

- it is hard to calculate μ_{Haus}^{Q} in general.
- not clear whether (or in which cases) the Hausdorff measure is a smooth measure on *M*.