Popp measure and the intrinsic Sub-Laplacian

2. lecture

"Singular Integrals on nilpotent Lie groups and related topics" Summer school, Universität Göttingen

Wolfram Bauer
Leibniz Universität Hannover

Sept. 19-23, 2022

Outline

1. From the Riemannian to the Subriemannian Laplacian
2. Nilpotentization and Popp measure
3. Subriemannian isometries
4. Sub-Laplacian on nilpotent Lie groups

Subriemannian Geometry (Reminder from the 1. talk)

"Subriemannian geometry models motions under non-holonomic constraints".

Definition

A Subriemannian manifold (shortly: SR-m) is a triple $(M, \mathcal{H},\langle\cdot, \cdot\rangle)$ with:

- M is a smooth manifold (without boundary), $\operatorname{dim} M \geq 3$ and $\mathcal{H} \subset T M$ is a vektor distribution.
- \mathcal{H} is bracket generating of rank $k<\operatorname{dim} M$, i.e.

$$
\operatorname{Lie}_{x} \mathcal{H}=T_{x} M
$$

- $\langle\cdot, \cdot\rangle_{x}$ is a smoothly varying family of inner products on \mathcal{H}_{x} for $x \in M$.

Question: Can we assign "geometric operators" to such a structure similar to the Laplacian in Riemannian geometry?

Regular Distribution

Let $\mathcal{H} \subset T M$ denote a distribution on M. Define vector spaces depending on $q \in M$:

$$
\mathcal{H}^{1}:=\mathcal{H}, \quad \text { and } \quad \mathcal{H}^{r+1}:=\mathcal{H}^{r}+\left[\mathcal{H}^{r}, \mathcal{H}\right]
$$

where

$$
\left[\mathcal{H}^{r}, \mathcal{H}\right]_{q}:=\operatorname{span}\left\{[X, Y]_{q}: X \in \mathcal{H}^{r} \text { and } Y \in \mathcal{H}\right\}
$$

This gives a flag of vector spaces

$$
\mathcal{H}_{q}=\mathcal{H}_{q}^{1} \subset \mathcal{H}_{q}^{2} \subset \cdots \subset \mathcal{H}_{q}^{r} \subset \mathcal{H}_{q}^{r+1} \subset \cdots T_{q} M
$$

Remark: \mathcal{H} bracket generating: $\forall q \in M, \exists \ell_{q} \in \mathbb{N}$ with $\mathcal{H}_{q}^{\ell_{q}}=T_{q} M$.

Definition

\mathcal{H} is called regular, if the dimensions $\operatorname{dim} \mathcal{H}_{q}^{r}$ are independent of $q \in M$.
Ex: The 3-dimensional Heisenberg group \mathbb{H}_{3} is regular as a SR manifold.

A non-regular distribution, (Martinet distribution)

Example: A distribution which is not regular across a line:
On $M=\mathbb{R}^{3}$ with coordinates $q=(x, y, z)$ consider the vector fields:

$$
X:=\frac{\partial}{\partial x}+\frac{y^{2}}{2} \frac{\partial}{\partial z} \quad \text { and } \quad Y:=\frac{\partial}{\partial y}
$$

Then we have the Lie bracket:

$$
[X, Y]=-y \frac{\partial}{\partial z}
$$

Therefore:

$$
\mathcal{H}_{q}^{2}=\operatorname{span}\left\{X, Y, y \frac{\partial}{\partial z}\right\} \quad \Longrightarrow \quad \mathcal{H}_{(x, 0, z)}^{2}=\operatorname{span}\left\{\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right\} .
$$

Observe: The dimension of \mathcal{H}_{q}^{2} "jumps" at a hyperplane:

$$
\operatorname{dim} \mathcal{H}_{q}^{2}= \begin{cases}2, & \text { if } y=0 \\ 3, & \text { if } y \neq 0\end{cases}
$$

From Riemannian to the Subriemannian Laplacian

Goal: In analogy to the Laplace operator in Riemannian geometry we want to assign a Sub-Laplace operator to the Subriemannian structure.

1. Recall the definition of the Beltrami-Laplace operator:

Let (M, g) be an oriented Riemannian manifold with $\operatorname{dim} M=n$ and let $\left[X_{1}, \cdots, X_{n}\right]$ be a local orthonormal frame around a point $q \in M$.

Definition

The Riemannian volume form ω is defined through the requirement:

$$
\omega\left(X_{1}, \cdots, X_{n}\right)=1
$$

Or in coordinates:
$\omega=\sqrt{\operatorname{det}\left(g_{i j}\right)} d x_{1} \wedge \cdots \wedge d x_{n} \quad$ where $\quad g_{i j}=g\left(\partial_{i}, \partial_{j}\right), \quad \partial_{i}:=\frac{\partial}{\partial x_{i}}$.
Define the Beltrami-Laplace operator by: $\Delta=\operatorname{div}_{\omega} \circ$ grad.

The Sub-Laplacian

Analogously to the definition of the Laplace operator we assign a differential operator to a SR-manifold with regular distribution \mathcal{H}.

We need two ingredients, namely:

- a $S R$ gradient,
- a $S R$ divergence.

Horizontal gradient and ω-divergence

Let ω be a smooth measure, X a vector field on M and $\varphi \in C^{\infty}(M)$: ${ }^{a}$

$$
\begin{aligned}
\mathcal{L}_{X}(\omega) & =\operatorname{div}_{\omega}(X) \omega \\
\langle\underbrace{\operatorname{grad}_{\mathcal{H}}(\varphi)}_{\in \mathcal{H}_{l}}, v\rangle_{q} & =d \varphi(v), \quad v \in \mathcal{H}_{q} \quad \text { (horizontal gradient). }
\end{aligned}
$$

These equations - together with the horizontality condition of the gradient - define $\operatorname{div}_{\omega}(X)$ and $\operatorname{grad}_{\mathcal{H}}(\varphi)$.

[^0]
Sub-Laplacian

Definition

The Sub-Laplacian on a SR-manifold $(M, \mathcal{H},\langle\cdot, \cdot\rangle)$ associated to a smooth volume ω is defined by

$$
\Delta_{\text {sub }}:=\operatorname{div}_{\omega} \circ \operatorname{grad}_{\mathcal{H}} .
$$

Consider a local orthonormal frame for \mathcal{H}

$$
\left[X_{1}, \cdots, X_{m}\right] \quad \text { with } \quad m \leq n=\operatorname{dim} M
$$

Similar to the Laplacian we can express $\Delta_{\text {sub }}$ in the form:

$$
\Delta_{\mathrm{sub}}=\sum_{i=1}^{m}\left[X_{i}^{2}+\operatorname{div}_{\omega}\left(X_{i}\right) \cdot X_{i}\right]
$$

The Sub-Laplacian

Theorem

The $S R$ Laplacian $\Delta_{\text {sub }}$ associated to a smooth measure ω is negative, symmetric and, if M is compact, essentially self-adjoint on the space $C_{c}^{\infty}(M) \subset L^{2}(M)$.

Proof: (1. statement) Let $f \in C_{c}^{\infty}(M)$ and let X be a vector field on M. One shows:

$$
\int_{M} f \cdot \underbrace{\operatorname{div}_{\omega}(X) \omega}_{=\mathcal{L}_{X}(\omega)}=-\int_{M} X(f) \omega=-\int_{M} d f(X) \omega
$$

Choose $X=\operatorname{grad}_{\mathcal{H}}(g)$ with $g \in C_{c}^{\infty}(M)$. Symmetry and negativity follow:

$$
\int_{M} f \cdot\left(\Delta_{\text {sub }} g\right) \omega=-\int_{M}\left\langle\operatorname{grad}_{\mathcal{H}} f, \operatorname{grad}_{\mathcal{H}} g\right\rangle \omega
$$

Essentially selfadjointness needs more work.

Nilpotentization and Popp measure

Question: How to choose the smooth measure ω in the ω-divergence when defining the sub-Laplacian

$$
\Delta_{\text {sub }}:=\operatorname{div}_{\omega} \circ \operatorname{grad}_{\mathcal{H}} ?
$$

Assumption: Let $(M, \mathcal{H},\langle\cdot, \cdot\rangle)$ be a regular subriemannian manifold.
Consider again the flag induced by the bracket generating distribution \mathcal{H} :

$$
\mathcal{H}=\mathcal{H}^{1} \subset \mathcal{H}^{2} \subset \cdots \subset \mathcal{H}^{r} \subset \mathcal{H}^{r+1} \subset \cdots
$$

Reminder: $\operatorname{dim} \mathcal{H}_{q}^{r}$ for all r are independent of $q \in M$, where:

$$
\begin{aligned}
\mathcal{H}^{1}: & =\mathcal{H}=\text { "sheave of smooth horizontal vector fields", } \\
\mathcal{H}^{r+1}: & =\mathcal{H}^{r}+\left[\mathcal{H}^{r}, \mathcal{H}\right],
\end{aligned}
$$

with

$$
\left[\mathcal{H}^{r}, \mathcal{H}\right]_{q}=\operatorname{span}\left\{[X, Y]_{q}: X \in \mathcal{H}^{r} \text { and } Y \in \mathcal{H}\right\}
$$

Nilpotentization

For each $q \in M$ we obtain a direct sum of vector spaces:

$$
\begin{aligned}
\operatorname{gr}(\mathcal{H})_{q} & =\mathcal{H}_{q} \oplus \mathcal{H}_{q}^{2} / \mathcal{H}_{q} \oplus \cdots \oplus \mathcal{H}_{q}^{r} / \mathcal{H}_{q}^{r-1} \\
& =\text { nilpotentization. }
\end{aligned}
$$

Observations:

(a) Lie brackets of vector fields on the manifold M induce a Lie algebra structure on $\operatorname{gr}(\mathcal{H})_{q}$ such that

$$
v \in \mathcal{H} \text { and } w \in \mathcal{H}_{q}^{j} / \mathcal{H}_{q}^{j-1} \quad \Longrightarrow \quad[v, w] \in \mathcal{H}_{q}^{i+1} / \mathcal{H}_{q}^{i} .
$$

(b) The Lie algebra in (a) is nilpotent, i.e. there is $n \in \mathbb{N}$ such that:

$$
\begin{equation*}
\left[X_{1}\left[X_{2} \cdots\left[X_{n}, X\right] \cdots\right]\right]=0, \quad \forall X_{1}, \cdots, X_{n}, X \in \mathfrak{g} \tag{*}
\end{equation*}
$$

The minimal n in (b) is called the step of the nilpotent Lie algebra. Example: The step of the nilpotentization $\operatorname{gr}(\mathcal{H})_{q}$ is r.

Popp measure: construction in the case $r=2$
$(M, \mathcal{H},\langle\cdot, \cdot\rangle)=$ regular SR manifold. Let $r=2$ and $q \in M$.

1. step: Let $v, w \in \mathcal{H}_{q}$ and V, W be horizontal vector fields near p with:

$$
V(q)=v \quad \text { and } \quad W(q)=w .
$$

Consider the map

$$
\pi: \mathcal{H}_{q} \otimes \mathcal{H}_{q} \rightarrow \mathcal{H}_{q}^{2} / \mathcal{H}_{q}: \pi(v \otimes w):=[V, W]_{q} \bmod \mathcal{H}_{q}
$$

Some properties of π :

- π is surjective,
- the inner product on \mathcal{H}_{q} induces an inner product on the Hilbert space tensor product $\mathcal{H}_{q} \otimes \mathcal{H}_{q}$.
Question: Is the map π well-defined?

With horizontal vector fields V and W with $V_{q}=v$ and $W_{q}=w$:

$$
\pi: \mathcal{H}_{q} \otimes \mathcal{H}_{q} \rightarrow \mathcal{H}_{q}^{2} / \mathcal{H}_{q}: \pi(v \otimes w):=[V, W]_{q} \bmod \mathcal{H}_{q}
$$

Lemma

The map π is independent of the choice of V and W.
Proof: Let \widetilde{V} and \widetilde{W} be different horizontal extensions of v and w, i.e.

$$
\widetilde{V}_{p}, \widetilde{W}_{p} \in \mathcal{H}_{p} \quad \forall p \in U_{q}, \quad \text { and } \quad \widetilde{V}_{q}=v, \quad \widetilde{W}_{q}=w
$$

With a local frame $\left[X_{1}, \cdots, X_{m}\right]$ of \mathcal{H} we can write:

$$
\widetilde{V}=V+\sum_{i=1}^{m} f_{i} X_{i} \quad \text { and } \quad \widetilde{W}=W+\sum_{i=1}^{m} g_{i} X_{i}
$$

where $f_{i}, g_{i} \in C^{\infty}(M)$ fulfill $f_{i}(q)=g_{i}(q)=0$.

Proof: (continued)

We form Lie brackets:

$$
\begin{aligned}
{[\widetilde{V}, \widetilde{W}] } & =\left[V+\sum_{i=1}^{m} f_{i} X_{i}, W+\sum_{j=1}^{m} g_{j} X_{j}\right] \\
& =[V, W]+\sum_{j=1}^{m}\left[V, g_{j} X_{j}\right]-\left[W, f_{j} X_{j}\right]+\sum_{i, j=1}^{m}\left[f_{i} X_{i}, g_{j} X_{j}\right]=(*)
\end{aligned}
$$

Use the rule:

$$
\left[V, g_{j} X_{j}\right]=V\left(g_{j}\right) X_{j}+g_{j}\left[V, X_{j}\right]
$$

to obtain $\left[f_{i} X_{i}, g_{j} X_{j}\right]_{q}=f_{i}(q) X_{i}\left(g_{j}\right)_{q}\left(X_{j}\right)_{q}+g_{j}(q)\left[f_{i} X_{i}, X_{j}\right]_{q}=0$ and

$$
[\widetilde{V}, \widetilde{W}]_{q}=[V, W]_{q}+\sum_{j=1}^{m}\left(V\left(g_{j}\right)-W\left(f_{j}\right)\right)\left(X_{j}\right)_{q}=[V, W]_{q} \bmod \mathcal{H}_{q}
$$

This proves the statement.

Summary

Consider the map

$$
\pi: \mathcal{H}_{q} \otimes \mathcal{H}_{q} \rightarrow \mathcal{H}_{q}^{2} / \mathcal{H}_{q}: \pi(v \otimes w):=[V, W]_{q} \bmod \mathcal{H}_{q} .
$$

Some properties of π :

- π is surjective,
- the inner product on \mathcal{H}_{q} induces an inner product on $\mathcal{H}_{q} \otimes \mathcal{H}_{q}$.
- Finally:

$$
\mathcal{H}_{q}^{2} / \mathcal{H}_{q} \cong \operatorname{kern}(\pi)^{\perp} \subset \mathcal{H}_{q} \otimes \mathcal{H}_{q} .
$$

Consequence: The inner product on \mathcal{H}_{q} induces a inner product on:

$$
\operatorname{gr}(\mathcal{H})_{q}=\mathcal{H}_{q} \oplus \mathcal{H}_{q}^{2} / \mathcal{H}_{q}=\text { nilpotentization } .
$$

This inner product induces a canonical volume form, i.e. an element ${ }^{1}$

$$
\mu_{q} \in \Lambda^{n} \operatorname{gr}(\mathcal{H})_{q}^{*} \cong\left(\Lambda^{n} \operatorname{gr}(\mathcal{H})_{q}\right)^{*} .
$$

[^1]W. Bauer (Leibniz Universität Hannover) Popp measure and intrinsic Sub-Laplacian

Definition: Popp measure $(r=2)$
2. step: We need to produce a volume form on M itself.

Let $n=\operatorname{dim} M$. Then there is a canonical isomorphism

$$
\Theta_{q}: \Lambda^{n}\left(T_{q} M\right) \rightarrow \Lambda^{n} \operatorname{gr}(\mathcal{H})_{q}
$$

Explicitly:

Let v_{1}, \cdots, v_{n} be a basis of $T_{q} M$ s. t. v_{1}, \cdots, v_{m} is a basis of \mathcal{H}_{q}. Put

$$
\Theta_{q}\left(v_{1} \wedge \cdots \wedge v_{n}\right):=v_{1} \wedge \cdots \wedge v_{m} \widehat{\otimes}\left(v_{m+1}+\mathcal{H}_{q}\right) \wedge \cdots \wedge\left(v_{n}+\mathcal{H}_{q}\right)
$$

Then Θ_{q} is independent of the choice of such basis.

Definition: Popp measure

With the volume form $\mathcal{P}_{q}:=\Theta_{q}^{*}\left(\mu_{q}\right)=\mu_{q} \circ \Theta_{q} \in\left(\Lambda^{n} T_{q} M\right)^{*}$ we form

$$
\mathcal{P} \in \Omega^{n}(M)=\text { Popp measure. }
$$

Remark: \mathcal{P} generalizes to $S R$-structures of arbitrary step $r>0$.

Intrinsic Sub-Laplacian

Let $(M, \mathcal{H},\langle\cdot, \cdot\rangle)$ be a regular SR-manifold with Popp measure \mathcal{P}.

Definition

The intrinsic Sub-Laplacian on M is the one associated to the Popp measure \mathcal{P} :

$$
\Delta_{\mathcal{P}}=\operatorname{div}_{\mathcal{P}} \circ \operatorname{grad}_{\mathcal{H}}
$$

1. Example: Martinet distribution

Consider the Martinet distribution on \mathbb{R}^{3} :
Define vector fields:

$$
X:=\frac{\partial}{\partial x}+\frac{y^{2}}{2} \frac{\partial}{\partial z}, \quad Y:=\frac{\partial}{\partial y} \quad \text { and } \quad Z=\frac{\partial}{\partial z} .
$$

Consider the following distribution: With $q \in \mathbb{R}^{3}$ put:

$$
\begin{aligned}
\mathcal{H}_{q}: & =\operatorname{span}\left\{X_{q}, Y_{q}\right\} \\
& =\operatorname{kern}\left(\Theta_{q}\right) \quad \text { where } \quad \Theta=d z-\frac{y^{2}}{2} d x \\
& =\text { Martinet distribution. }
\end{aligned}
$$

- An inner product on \mathcal{H}_{q} is defined by declaring X_{q} and Y_{q} orthonormal.

- bracket relations:

$$
[X, Y]=-y Z \quad \text { and } \quad[Y,[X, Y]]=-Z
$$

1. Example: Martinet distribution (continued)

The Martinet distribution \mathcal{H} is

- bracket generating on \mathbb{R}^{3} and of step 3 if $y=0$,
- regular of step 2 restricted to

$$
M_{y \neq 0}:=\left\{(x, y, z)^{t}: y \neq 0\right\} .
$$

Popp measure on $M_{y \neq 0}$: Consider the map:

$$
\pi: \mathcal{H}_{q} \otimes \mathcal{H}_{q} \rightarrow \mathcal{H}_{q}^{2} / \mathcal{H}_{q}: \pi(v \otimes w):=[X, Y]_{q} \bmod \mathcal{H}_{q}
$$

where $v=X_{q}$ and $w=Y_{q}$. Then:

$$
\begin{aligned}
(\operatorname{ker} \pi)^{\perp} & =\operatorname{span}\left\{X \otimes X, Y \otimes Y, \frac{1}{\sqrt{2}}(X \otimes Y+Y \otimes X)\right\}^{\perp} \\
& =\operatorname{span}\left\{\frac{1}{\sqrt{2}}(X \otimes Y-Y \otimes X)\right\}
\end{aligned}
$$

1. Example: Martinet distribution (continued)

Using $[X, Y]=-y Z$ we find:

$$
\begin{aligned}
\frac{1}{\sqrt{2}} \pi[X \otimes Y-Y \otimes X] & =\sqrt{2} \cdot[X, Y]+\mathcal{H}_{q} \\
& =-\sqrt{2} y Z+\mathcal{H}_{q}
\end{aligned}
$$

This induces an inner product norm on $\mathcal{H}_{q}^{2} / \mathcal{H}_{q}=\operatorname{span}\{Z\}+\mathcal{H}_{q}$ via:

$$
\left\|Z+\mathcal{H}_{q}\right\|_{q}=\frac{1}{\sqrt{2}|y|}
$$

Take the dual basis to $[X, Y, \sqrt{2}|y| Z]$ which is

$$
\left[X^{*}=d x, Y^{*}=d y,(\sqrt{2}|y| Z)^{*}=(\sqrt{2}|y|)^{-1}\left(d z-\frac{y^{2}}{2} d x\right)\right]
$$

Popp measure:

$$
\mathcal{P}=X^{*} \wedge Y^{*} \wedge(\sqrt{2}|y| Z)^{*}=\frac{1}{\sqrt{2}|y|} d x \wedge d y \wedge d z
$$

Intrinsic Sub-Laplacian for the Martinet distribution

Knowing the Popp measure, we can calculate the intrinsic Sub-Laplacian

$$
\Delta_{\text {sub }}=\operatorname{div}_{\mathcal{P}} \circ \operatorname{grad}_{\mathcal{H}} \quad \text { on } \quad M_{y \neq 0} \subset \mathbb{R}^{3} .
$$

Recall the following explicit expression:

$$
\Delta_{\text {sub }}=X^{2}+Y^{2}+\operatorname{div}_{\mathcal{P}}(X) X+\operatorname{div}_{\mathcal{P}}(Y) Y
$$

Note that

$$
\begin{aligned}
& \operatorname{div}_{\mathcal{P}}(X) \cdot \mathcal{P}=\mathcal{L}_{X} \mathcal{P}=d\left(\iota_{X} \mathcal{P}\right)=d\left(\frac{1}{\sqrt{2}|y|} d y \wedge d z\right)=0 \cdot \mathcal{P} \\
& \operatorname{div}_{\mathcal{P}}(Y) \cdot \mathcal{P}=\mathcal{L}_{Y} \mathcal{P}=d\left(\iota_{Y} \mathcal{P}\right)=-d\left(\frac{1}{\sqrt{2}|y|} d x \wedge d z\right)=-\frac{1}{y} \cdot \mathcal{P} .
\end{aligned}
$$

Intrinsic Sub-Laplacian

The intrinsic Sub-Laplacian becomes singular at the $y=0$ - surface.

$$
\Delta_{\text {sub }}=X^{2}+Y^{2}-\frac{1}{y} Y
$$

Popp measure and local isometries

Riemannian isometry: diffeomorphism with differential being an isometry for the Riemannian metric.

Definition (volume preserving transformation)
Let M be a manifold and $\mu \in \Omega^{n}(M)$ a volume form. A diffeomorphism $\Phi: M \rightarrow M$ is a volume preserving transformation if

$$
\phi^{*} \mu=\mu .
$$

Standard fact:

Riemannian isometries are volume preserving transformation for the standard Riemannian volume ω.

Question: Is there an analogous statement in the case of a SR manifold and the Popp measure?

Subriemannian isometries

Let $(M, \mathcal{H},\langle\cdot, \cdot\rangle)$ be a SR manifold and

$$
\begin{equation*}
\Phi: M \rightarrow M \tag{*}
\end{equation*}
$$

a diffeomorphism.

Definition

The map $(*)$ is called isometry, if its differential $\Phi_{*}: T M \rightarrow T M$ preserves the SR structure, i.e.

- $\Phi_{*}\left(\mathcal{H}_{q}\right)=\mathcal{H}_{\Phi(q)}$ for all $q \in M$,
- For all $q \in M$ and all horizontal vector fields X, Y :

$$
\left\langle\Phi_{*} X, \Phi_{*} Y\right\rangle_{\Phi(q)}=\langle X, Y\rangle_{q} .
$$

We write Iso (M) for the group of all isometries on the SR manifold M.

Popp volume and isometries

Theorem (D. Barilari, L. Rizzi, 2012)
Let $(M, \mathcal{H},\langle\cdot, \cdot\rangle)$ be a regular $S R$ manifold.
(a) $S R$ isometries are volume preserving for Popp's volume.
(b) If Iso(M) acts transitively, then Popp's volume is the unique volume (up to multiplication by a constant) with (a).

Example

Let $M=G$ be a Lie group with a left-invariant SR-structure. Then the left-translation

$$
L_{g}: G \rightarrow G: h \mapsto L_{g} h=g * h
$$

obviously defines a SR isometry.

The Sub-Laplacian on nilpotent Lie groups

Carnot group
A Carnot group is a connected, simply connected Lie group G, with Lie algebra \mathfrak{g} allowing a stratification

$$
\mathfrak{g}=V_{1} \oplus \cdots \oplus V_{r} .
$$

Moreover, the following bracket relations hold:

$$
\begin{array}{ll}
{\left[V_{1}, V_{j}\right]=V_{j+1},} & j=1, \cdots, r-1, \\
{\left[V_{j}, V_{r}\right]} & =\{0\}, \\
j=1, \cdots, r .
\end{array}
$$

In particular \mathfrak{g} is nilpotent of step r.
Example: Let \mathfrak{h}_{3} be the Heisenberg Lie algebra. Then

$$
\mathfrak{h}_{3}=\operatorname{span}\{X, Y\} \oplus \operatorname{span}\{Z\},
$$

where $[X, Y]=Z$. This is a 2-step case.

Carnot group

Reminder (Lie's fundamental Theorem):

Corollary

For every finite dimensional Lie algebra \mathfrak{g} over \mathbb{R} there is a connected, simply connected Lie group G which a Lie algebra isomorphic to \mathfrak{g}. Moreover, G is unique up to isomorphisms.

This leads to the notion of Carnot group.

Definition

Let \mathfrak{g} be a Carnot Lie algebra. The connected, simply connected Lie group G (up to isomorphisms) with Lie algebra \mathfrak{g} is called Carnot group.

Remark: If \mathfrak{g} has step r, we call the Carnot group G of step r.

Example: Engel group

Consider the Engel group $\mathcal{E}_{4} \cong \mathbb{R}^{4}$ as a matrix group:

$$
\mathcal{E}_{4}=\left\{\left(\begin{array}{cccc}
1 & x & \frac{x^{2}}{2} & z \\
0 & 1 & x & w \\
0 & 0 & 1 & y \\
0 & 0 & 0 & 1
\end{array}\right): x, y, w, z \in \mathbb{R}\right\} \subset \mathbb{R}^{4 \times 4}
$$

Then \mathcal{E}_{4} has the Lie algebra \mathfrak{e}_{4} with non-trivial bracket relations:

$$
[X, Y]=W \quad \text { und } \quad[X, \underbrace{[X, Y]}_{=W}]=Z
$$

and stratification

$$
\mathfrak{e}_{4}=\operatorname{span}\{X, Y\} \oplus \operatorname{span}\{W\} \oplus \operatorname{span}\{Z\} .
$$

Corollary

The Engel group \mathcal{E}_{4} is a Carnot group of step 3.

Nilpotent approximation

Let $(M, \mathcal{H},\langle\cdot, \cdot)$ be a regular $S R$ manifold. Let $q \in M$ and recall:

$$
\begin{aligned}
\operatorname{gr}(\mathcal{H})_{q} & =\mathcal{H}_{q} \oplus \mathcal{H}_{q}^{2} / \mathcal{H}_{q} \oplus \cdots \oplus \mathcal{H}_{q}^{r} / \mathcal{H}_{q}^{r-1} \\
& =\text { nilpotentization. }
\end{aligned}
$$

Observations:

- Already discussed: Lie brackets of vector fields on M induce a Lie algebra structure on $\operatorname{gr}(\mathcal{H})_{q}$. (respecting the grading).
- Let $\operatorname{Gr}(\mathcal{H})_{q}$ denote the connected, simply connected nilpotent Lie group with Lie algebra $\operatorname{gr}(\mathcal{H})_{q}$.
- The space $\mathcal{H}_{q} \subset \operatorname{gr}(\mathcal{H})_{q}$ induces for each $q \in M$ a (left-invariant) SR structure on the group $\operatorname{Gr}(\mathcal{H})_{q}$ (Example of talk 1).

Definition

The group $\operatorname{Gr}(\mathcal{H})_{q}$ with the induced SR structure is called nilpotent approximation of the $S R$ manifold M at $q \in M$.

Nilpotent approximation

Conclusion:

Carnot groups seem to be a local model of the SR manifold. It may be helpful to first study the Sub-Laplacian and subelliptic heat flow there.

Question

What is the intrinsic Sub-Laplacian on a Carnot group or (more generally) on any nilpotent Lie group?

Exponential coordinates: Let $(G, *)$ be a connected, simply connected nilpotent Lie group of dimension $\operatorname{dim} G=n$ and with Lie algebra \mathfrak{g}. Then

$$
\exp : \mathfrak{g} \rightarrow G
$$

is a diffeomorphism. Hence we can pullback the product on G to $\mathfrak{g} \cong \mathbb{R}^{n}$ via \exp (exponential coordinates).

Exponential coordinates

We have an identification:

$$
(G, *) \cong\left(\mathfrak{g} \cong \mathbb{R}^{n}, \circ\right),
$$

where

$$
g \circ h:=\log (\exp (g) * \exp (h)), \quad \text { for all } \quad g, h \in \mathfrak{g} .
$$

Baker-Campbell-Hausdorff formula

Let $g, h \in \mathfrak{g}$, then

$$
\begin{aligned}
\exp (g) & * \exp (h)= \\
& =\exp \left(g+h+\frac{1}{2}[g, h]+\frac{1}{12}[g,[g, h]]-\frac{1}{12}[h,[g, h]] \mp \cdots\right)
\end{aligned}
$$

Note: if \mathfrak{g} is nilpotent, then the sum in the exponent is always finite.

Exponential coordinates

Using this formula above gives:

$$
g \circ h=g+h+\frac{1}{2}[g, h]+\frac{1}{12}[g,[g, h]]-\frac{1}{12}[h,[g, h]] \mp \cdots \text { (finite). }
$$

Example

Consider the case $r=$ step $\mathfrak{g}=2$ and choose a decomposition

$$
\mathfrak{g}=V_{1} \oplus V_{2}
$$

such that

$$
\left[V_{1}, V_{1}\right]=V_{2} \quad \text { and } \quad\left[V_{1}, V_{2}\right]=\left[V_{2}, V_{2}\right]=0
$$

Consider the $S R$ structure on $\mathfrak{g} \cong G$ defined by:

$$
\mathcal{H}=V_{1}=\text { "left-invariant vector fields." }
$$

Sub-Laplacian on nilpotent Lie groups

Example (continued)

Consider an inner product $\langle\cdot, \cdot\rangle$ on V_{1} and chose an orthonormal basis:

$$
\left[X_{1}, \cdots, X_{m}\right]=\text { "orthonormal basis of } V_{1} "
$$

Chose a basis [Y_{m+1}, \cdots, Y_{n}] of V_{2}. Then there are structure constants $c_{i j}^{k}$ such that

$$
\left[X_{i}, X_{j}\right]=\sum_{\ell=m+1}^{n} c_{i j}^{\ell} Y_{\ell}, \quad\left[X_{i}, Y_{\ell}\right]=0=\left[Y_{\ell}, Y_{h}\right]
$$

This choice of basis gives a concrete identification $\mathfrak{g} \cong \mathbb{R}^{n}$.
Goal: Calculate the left-invariant vector fields corresponding to the basis elements X_{i} explicitly in coordinates of \mathbb{R}^{n}.

Sub-Laplacian on nilpotent Lie groups

Example (continued)

Let $f \in C^{\infty}\left(\mathbb{R}^{n}\right)$ and $g=\sum_{j=1}^{m} x_{j} X_{j} \in \mathfrak{g}$. Then

$$
\begin{aligned}
{\left[X_{i} f\right](g) } & =\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} f\left(g \circ t X_{i}\right) \\
& =\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} f\left(g+t X_{i}+\frac{1}{2}\left[g, t X_{i}\right]\right) \\
& =\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} f\left(g+t X_{i}+\frac{t}{2} \sum_{j=1}^{m} x_{j}\left[X_{j}, X_{i}\right]\right) \\
& =\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} f\left(g+t X_{i}+\frac{t}{2} \sum_{j=1}^{m} \sum_{\ell=m+1}^{n} x_{j} c_{j i}^{\ell} Y_{\ell}\right) \\
& =\left\{\frac{\partial}{\partial x_{i}}-\frac{1}{2} \sum_{j=1}^{m} \sum_{\ell=m+1}^{n} x_{j} c_{i j}^{\ell} \frac{\partial}{\partial y_{\ell}}\right\} f(g) .
\end{aligned}
$$

Sub-Laplacian on nilpotent Lie groups

Example (continued)

We can identify $X_{i} \in V_{1} \subset \mathfrak{g}$ with the following left-invariant vector field on $G \cong \mathbb{R}^{n}$:

$$
\widetilde{X}_{i}:=\frac{\partial}{\partial x_{i}}-\frac{1}{2} \sum_{j=1}^{m} \sum_{\ell=m+1}^{n} x_{j} c_{i j}^{\ell} \frac{\partial}{\partial y_{\ell}} .
$$

Observations:

- the coefficients in front of $\frac{\partial}{\partial x_{i}}$ is one for $i=1, \cdots, m$,
- in the double sum the variable x_{i} does not appear ($c_{i i}^{l}=0$ for all ℓ).

Let $\mathcal{P}=$ Lebesgue measure be the Popp measure on $G \cong \mathbb{R}^{n}$.
Goal: Calculate the \mathcal{P}-divergence of X_{i} for $i=1, \cdots, m$:
From the above observations:

$$
\mathcal{L}_{\widetilde{x}_{i}}\left(d x_{1} \wedge \cdots \wedge d x_{m} \wedge d y_{m+1} \wedge \cdots \wedge d y_{n-m}\right)=d \circ{ }^{\check{x}_{i}}{ }^{\mathcal{P}}=d\left(\mathcal{P}\left(\tilde{X}_{i}, \cdot\right)\right)=0 .
$$

Therefore $\operatorname{div}_{\mathcal{P}}\left(X_{i}\right)=0$ for all $i=1, \cdots, m$.

Sub-Laplacian on nilpotent Lie groups

Example (continued)

Conclusion: In the above example of a step-2 nilpotent Lie group we have found:

$$
\Delta_{\text {sub }}=\sum_{i=1}^{m}[\widetilde{X}_{i}^{2}+\underbrace{\operatorname{div}_{\omega}\left(X_{i}\right)}_{=0} X_{i}]=\sum_{i=1}^{m} \widetilde{X}_{i}^{2} .
$$

Hence, the intrinsic sub-Laplacian has no first order terms. We say:

$$
\Delta_{\text {sub }}=\text { sum-of-squares-operator. }
$$

Hypoellipticity

Theorem (L. Hörmander, 1967)
Let $\Omega \subset \mathbb{R}^{n}$ be open. Consider C^{∞} - vector fields $\left[X_{0}, \cdots, X_{m}\right]$ with

$$
\text { rank Lie }\left[X_{0}, \cdots, X_{m}\right]=n, \quad x \in \Omega \quad \text { (Hörmander condition). }
$$

The differential operator \mathcal{L} is hypoelliptic:

$$
\mathcal{L}:=\sum_{j=1}^{m} X_{j}^{2}+X_{0}+c \quad c \in C^{\infty}(\Omega)
$$

Remarks

- An operator P is called hypoelliptic if

$$
P u=f \quad \text { with } \quad f, u \in \mathcal{D}^{\prime}(\Omega)
$$

implies: Let $\Omega_{0} \stackrel{\text { open }}{\subset} \Omega$ and $f \in C^{\infty}\left(\Omega_{0}\right)$, then $u \in C^{\infty}\left(\Omega_{0}\right)$.

- The hypoellipticity statement in the Hörmander's Theorem follows from subelliptic estimates:

$$
\|u\|_{s-\delta} \leq C_{D}\left(\|A u\|_{s}+\|u\|_{0}\right), \quad u \in C_{0}^{\infty}\left({ }_{\uparrow}^{D}\right)
$$

bounded domain

- In particular, elliptic operators (e.g. the Laplace operator on a Riemannian manifold) are hypoelliptic (elliptic regularity).

Hörmander theorem: the version on manifolds

Theorem (L. Hörmander, 1967)

Let \mathcal{L} be a differential operator on a manifold M, that locally in a neighborhood U of any point is written as

$$
\mathcal{L}=\sum_{i=1}^{m} X_{i}^{2}+X_{0}
$$

where $X_{0}, X_{1}, \cdots, X_{m}$ are C^{∞} - vector fields with

$$
\operatorname{Lie}_{q}\left\{X_{0}, X_{1}, \cdots, X_{m}\right\}=T_{q} M \quad \forall q \in U
$$

Then \mathcal{L} is hypoelliptic. In particular:
The intrinsic sub-Laplacian on a $S R$-manifold M is hypoelliptic.

Example: Kolmogorov operator

At the beginning of the 20th century:

A prototype of a kind of operator studied by A. N. Kolmogorov in relation with diffusion phenomena is the following:

Example: Kolmogorov operator (proto-type)

$$
\begin{aligned}
& K=\sum_{j=1}^{n} \partial_{x_{j}}^{2}+\sum_{j=1}^{n} x_{j} \partial_{y_{j}}-\partial_{t}, \quad \text { mit } \quad(x, y, t) \in \mathbb{R}^{2 n+1} \\
& \text { "sum of squares }+ \text { a first order term. }
\end{aligned}
$$

$x=$ velocity and $y:=$ position.
Operator with non-negative degenerate characteristic form.

References

R A. Agrachev, U. Boscain, J.-P. Gauthier, F. Rossi,
The intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups, J. Funct. Anal. 256 (2009), 2621-2655.
D. Barilari, L. Rizzi,

A formula for Popp's volume in Subriemannian geometry, AGMS 2013, 42-57.
國 W. Bauer, K. Furutani, C. Iwasaki,
Sub-Riemannian structures in a principal bundle and their Popp measures, Appl. Anal. 96 (2017), no. 14, 2390-2407.
圊 R. Montgomery,
A tour of Subriemannian Geometries, Their Geodesics and Applications, Mathematical Surveys and Monographs, 912002.

Thank you for your attention!

Distribution and horizontal curve

Front of SR geodesics at time T (picture by: U. Boscain, D. Barilari)

Appedix: The Hausdorff volume and Popp volume

 Question: How to choose the smooth measure ω in the ω-divergence?
Requirement

If we would like to have a "geometric operator" such measure should only depend on the internal data of the SR-structure.

Possible candidates:

- The Hausdorff measure of $\left(M, d_{c c}\right)$? (next slides)
- The Popp measure on \mathcal{P} (next slides). This measure is a-priori smooth by construction.

Remark

- Maybe both measures coincide?
- If we have a "canonical measure" ω we may consider the sub-Riemannian heat equation:

$$
\partial_{t}-\Delta_{\text {sub }}=0
$$

and study its geometric significance in comparison with the Riemannian setting.

Hausdorff measure

Let (M, d) be a metric space and $\Omega \subset M$. Let

- $\varepsilon, s>0$,
- $\left\{U_{\alpha}\right\}_{\alpha}$ a covering of Ω by open sets.

Consider:

$$
\mu_{\varepsilon}^{s}(\Omega):=\inf \left\{\sum_{\alpha}\left[\operatorname{diam} U_{\alpha}\right]^{s}: \forall \alpha: \operatorname{diam} U_{\alpha}<\varepsilon\right\} .
$$

Hausdorff measure

The value

$$
\mu^{s}(\Omega):=\lim _{\varepsilon \rightarrow 0} \mu_{\varepsilon}^{s}(\Omega) \in[0, \infty) \cup\{\infty\}
$$

is called s-dimensional Hausdorff measure of Ω.
Proposition: There is a unique value Q, the Hausdorff dimension of Ω, with $\mu^{s}(\Omega)=\infty$ for $s<Q$ and $\mu^{s}(\Omega)=0$ for $s>Q$.

Hausdorff measure

Let $(M, \mathcal{H},\langle\cdot, \cdot\rangle)$ be a Sub-Riemannian manifold. Then $\left(M, d_{c c}\right)$ is a metric space with:

$$
\begin{aligned}
d_{c c}(A, B)= & \inf \{\underset{\substack{\uparrow}}{ }\{\underset{\mathrm{SR}}{ }(\gamma): \gamma(0)=A \quad \gamma(1)=B, \quad \gamma \text { horizontal }\} \\
& \text { SR- length of } \gamma \\
& =\text { Carnot-Carathéodory distance on } M .
\end{aligned}
$$

Definition

Let $\mu_{\text {Haus }}^{Q}$ be the Hausdorff measure of the metric space $\left(M, d_{c c}\right)$.

Problem:

- it is hard to calculate $\mu_{\text {Haus }}^{Q}$ in general.
- not clear whether (or in which cases) the Hausdorff measure is a smooth measure on M.

[^0]: ${ }^{a} \mathcal{L}_{X}=\iota_{X} \circ d+d \circ \iota_{X}$.

[^1]: ${ }^{1}$ ("Wedge" elements of an orthonormal basis).

