Heat kernel of the Sub-Laplacian on the Heisenberg group

3. lecture

"Singular Integrals on nilpotent Lie groups and related topics" Summer school, Universität Göttingen

Wolfram Bauer
Leibniz Universität Hannover

Sept. 19-23, 2022

Outline

1. Subriemannian heat kernel: revisited
2. The Grushin operator: a simple model
3. Complex Hamilton Jacobi method
4. Subelliptic heat kernel: From Grushin operator to sub-Laplacian and back.

The SR heat kernel: revisited

Aim: We look for explicit formulas for the heat kernel of the Sub-Laplace operator on nilpotent Lie groups.

Definition

The heat kernel of the sub-Laplacian $\Delta_{\text {sub }}$ on an SR manifold ($M, \mathcal{H},\langle\cdot, \cdot\rangle$) denoted by:

$$
K(t ; x, y):(0, \infty) \times M \times M \longrightarrow \mathbb{R}
$$

is the fundamental solution of the heat operator:

$$
P:=\frac{\partial}{\partial t}-\Delta_{\text {sub }},
$$

i.e. $K(t ; x, y)$ fulfills

$$
\begin{cases}P K(t ; \cdot y)=0, & \text { for all } t>0 \\ \lim _{t \downarrow 0} K(t ; x, \cdot)=\delta_{x}, & \text { in the distributional sense. }\end{cases}
$$

The SR heat kernel: revisited

From now on assume: $\left(M, d_{C C}\right)$ is complete as a metric space.
Remarks: Abstractly, the following is known:

- $\Delta_{\text {sub }}$ is essentially selfadjoint on $C_{c}^{\infty}(M)$. Existence and uniqueness of the heat kernel is guaranteed. ${ }^{1}$
- Hörmander's Theorem also implies the hypoellipticity of the SR heat operator

$$
P:=\frac{\partial}{\partial t}-\Delta_{\text {sub }} .
$$

In fact, the SR heat kernel K solves

$$
P K(t ; \cdot, y)=0 .
$$

- K is symmetric in the space variables, i.e. $K(t ; x, y)=K(t ; y, x)$. Hence, K is a smooth kernel.

[^0]
The heat kernel: A bridge between analysis and geometry

Intuition: Let $x, y \in M$, (Riemannian manifold):
heat kernel $=K(t ; x, y)=$ "heat flowing from x to y at time t."

"Meta-Theorem", (Not a precise mathematical statement)

The heat kernel of the sub-Laplacian $\Delta_{\text {sub }}$ has the form of a path integral:

$$
K(t ; x, y)=\int_{P_{t}(x, y)} e^{-S_{t}(\gamma)} d \mu_{t}(\gamma)
$$

(i) $P_{t}(x, y)=$ space of horizontal curves, connecting x and y.
(ii) $S_{t}(\gamma)$ is a classical action $S_{t}(\gamma)=\frac{1}{2} \int_{0}^{1}\|\dot{\gamma}(s)\|^{2} d s$.
(iii) μ_{t}, a "measure" on the infinite dimensional space $P_{t}(x, y)$.

The heat kernel: A bridge between analysis and geometry

Question: How to calculate heat kernels in some examples (if possible)? In general, it is not possibly to calculate the heat kernel explicitly (and may not even be useful). However,

Remark

- For specific classes of subelliptic operators (including some sub-Laplace operators) methods and formulas are available, e.g. ${ }^{a}$ "Complex Hamilton-Jacobi method".
- Asymptotic properties are more easily obtained even without having explicit formulas.

[^1]
A model operator

Aim: To get an idea we start with a model operator for which we can calculate the heat kernel "by hand".
Consider the 3-dimensional Heisenberg group $\left(\mathbb{H}_{3} \cong \mathbb{R}^{3}, *\right)$ with product

$$
\left(x_{1}, y_{1}, z_{1}\right) *\left(x_{2}, y_{2}, z_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2}+\frac{1}{2}\left(x_{1} y_{2}-x_{2} y_{1}\right)\right)
$$

Corresponding Heisenberg Lie algebra:

$$
\mathfrak{h}_{3}=\operatorname{span}\{X, Y, Z\} \quad \text { where } \quad[X, Y]=Z
$$

where X, Y, Z are left-invariant vector fields on \mathbb{H}_{3} :
(Hypoelliptic) sub-Laplace operator

$$
\Delta_{\mathrm{sub}}=\frac{1}{2}\left(X^{2}+Y^{2}\right)=\frac{1}{2}\left(\frac{\partial}{\partial x}-\frac{y}{2} \frac{\partial}{\partial z}\right)^{2}+\frac{1}{2}\left(\frac{\partial}{\partial y}+\frac{x}{2} \frac{\partial}{\partial z}\right)^{2} .
$$

A model operator

Model: For simplicity we reduce the space dimension from three to two.
Consider the (abelian) subgroup:

$$
N_{Y}=\{(0, t, 0): t \in \mathbb{R}\} \subset\left(\mathbb{H}_{3}, *\right)
$$

and the projection $\pi: \mathbb{H}_{3} \longrightarrow N_{Y} \backslash \mathbb{H}_{3}: g \mapsto N_{Y} g$ onto the left-quotient.

Lemma

The map ρ below is well-defined and invertible (a diffeomorphism):

$$
\rho: N_{Y} \backslash \mathbb{H}_{3} \rightarrow \mathbb{R}^{2}: N_{Y} *(x, y, z) \mapsto\left(x, z+\frac{x y}{2}\right) \in \mathbb{R}^{2} .
$$

Well-definedness: Let $t \in \mathbb{R}$:

$$
\begin{aligned}
N_{Y} *(0, t, 0) *(x, y, z)= & N_{Y} * \\
& \left(x, y+t, z-\frac{x t}{2}\right) \stackrel{\rho}{\mapsto} \\
& \left(x, z-\frac{x t}{2}+\frac{1}{2} x(y+t)\right)=\left(x, z+\frac{x y}{2}\right) .
\end{aligned}
$$

A model operator

Via composition we obtain a map:

$$
\tilde{\pi}=\rho \circ \pi: \mathbb{H}_{3} \xrightarrow{\pi} N_{Y} \backslash \mathbb{H}_{3} \xrightarrow[\cong]{\cong} \mathbb{R}^{2}:(x, y, z) \mapsto\left(x, z+\frac{x y}{2}\right) .
$$

As usual let $(\tilde{\pi})^{*}$ denotes the pullback of functions along $\tilde{\pi}$:

$$
(\tilde{\pi})^{*}: C^{\infty}\left(\mathbb{R}^{2}\right) \rightarrow C^{\infty}\left(\mathbb{H}_{3}\right): f \mapsto f \circ \tilde{\pi} .
$$

Lemma

There is a second order differential operator \mathcal{G} on \mathbb{R}^{2} (called Grushin operator) such that:

$$
\begin{equation*}
\Delta_{\text {sub }} \circ(\tilde{\pi})^{*}=(\tilde{\pi})^{*} \circ \mathcal{G} . \tag{1}
\end{equation*}
$$

With coordinates (u, v) of \mathbb{R}^{2} it has the simple form:

$$
\mathcal{G}=\frac{1}{2}\left(\frac{\partial^{2}}{\partial u^{2}}+u^{2} \frac{\partial^{2}}{\partial v^{2}}\right)=\text { "sum-of-squares." }
$$

W. Bauer (Leibniz Universität Hannover) SR Geometry and Hypoelliptic Operators

A model operator

Remark

Note that the vector fields $V=\frac{\partial}{\partial u}$ and $W=u \frac{\partial}{\partial v}$ are linearly dependent exactly on the line

$$
\mathcal{S}:=\{(u, v)=(0, v): v \in \mathbb{R}\} \subset \mathbb{R}^{2} .
$$

The Grushin operator

$$
\mathcal{G}=\frac{1}{2}\left(V^{2}+W^{2}\right)
$$

is the Laplace operator on $\mathbb{R}^{2} \backslash \mathcal{S}$ (Grushin plane) with respect to a Riemannian metric, which becomes singular at \mathcal{S}.

Next plan:

We study the (subordinate to $\Delta_{\text {sub }}$ on \mathbb{H}_{3}) Grushin operator \mathcal{G} on \mathbb{R}^{2} and calculate its heat kernel via an explicit spectral decomposition.

Spectral decomposition and Mehler formula:

First step: Perform a partial Fourier transform in the operator \mathcal{G}.

$$
\mathcal{F}^{y}: L^{2}\left(\mathbb{R}^{2}\right) \rightarrow L^{2}\left(\mathbb{R}^{2}\right):\left[\mathcal{F}^{y} f\right](x, \eta)=\frac{1}{\sqrt{\pi}} \int_{\mathbb{R}} f(x, y) e^{-i y \eta} d y .
$$

Using the rule $\frac{\partial}{\partial y} \mathcal{F}^{y}=-i \mathcal{F}^{y} \eta$ we obtain the differential operator:

$$
L_{\eta}:=\left(\mathcal{F}^{y}\right)^{-1} \circ \mathcal{G} \circ \mathcal{F}^{y}=\frac{1}{2}\left(\frac{\partial^{2}}{\partial x^{2}}-x^{2} \eta^{2}\right), \quad \eta \in \mathbb{R} .
$$

Note: L_{η} is closely related to the well-understood Hermite operator.

Idea

We interpret $\left(L_{\eta}\right)_{\eta \in \mathbb{R}}$ as a parameter family of operators on \mathbb{R}. Now, perform a spectral decomposition of each operator L_{η}

From spectral decomposition to the heat kernel
Let A be an operator on $L^{2}(\mathbb{R})$ and $\left[\varphi_{j}: j \in \mathbb{N}\right] \subset \mathcal{S}(\mathbb{R})$ an orthonormal basis consisting of eigenfunctions with eigenvalues

$$
0 \geq \lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \ldots \geq \lambda_{j} \ldots \longrightarrow-\infty \quad \text { "fast" as } j \rightarrow \infty
$$

Ansatz: Then the heat kernel of A should have the form:

$$
\begin{equation*}
K(t ; g, h)=\sum_{j=1}^{\infty} e^{t \lambda_{j}} \varphi_{j}(g) \overline{\varphi_{j}(h)} \tag{2}
\end{equation*}
$$

(in case of convergence). In fact, let $f \in \mathcal{S}(\mathbb{R})$:

$$
\begin{aligned}
\left(\frac{\partial}{\partial t}-A\right) K(t ; \cdot, h) & =\sum_{j=1}^{\infty} e^{t \lambda_{j}} \underbrace{\left(\lambda_{j} \varphi_{j}-A \varphi_{j}\right)}_{=0} \overline{\varphi_{j}(h)}=0 . \\
\lim _{t \downarrow 0} \int_{\mathbb{R}^{2}} f(h) K(t ; g, h) d h & =\lim _{t \downarrow 0} \sum_{j=1}^{\infty} e^{t \lambda_{j}} \int_{\mathbb{R}^{2}} f(h) \varphi_{j}(g) \overline{\varphi_{j}(h)} d h \\
& =\sum\left\langle f, \varphi_{j}\right\rangle_{L^{2}} \varphi_{j}(g)=f(g)=\delta_{g}(f) .
\end{aligned}
$$

From spectral decomposition to the heat kernel

Observation: We known the spectral decomposition of $A=L_{\eta}$ explicitly.
Lemma (spectral decomposition of L_{η})
Let $\eta \neq 0$ be fixed. Consider the n-th Hermite polynomial $\left(n \in \mathbb{N}_{0}\right)$

$$
H_{n}(x)=(-1)^{n} e^{x^{2}} \frac{d^{n} e^{-x^{2}}}{d x^{n}} \quad \text { and put } \quad V_{n}(x):=e^{-\frac{1}{2}|\eta| x^{2}} H_{n}(\sqrt{|\eta|} x) .
$$

Then V_{n} is an eigenfunction of L_{η} with:

- eigenvalue $\lambda_{n}=-\left(n+\frac{1}{2}\right)|\eta|$ of multiplicity one:
- $\left\|V_{n}\right\|_{L^{2}}^{2}=\sqrt{\frac{\pi}{|\eta|}} 2^{n} n!$,
- and $\left[\frac{V_{n}}{\left\|V_{n}\right\|_{L^{2}}}: n \in \mathbb{N}_{0}\right]$ forms an orthonormal basis of $L^{2}(\mathbb{R})$.

Mehler formula

The previous observation provides the heat kernel of L_{η} for $\eta \neq 0$:

$$
\begin{aligned}
K^{\eta}(t ; x, \tilde{x}) & =\sum_{n=0}^{\infty} e^{-\left(n+\frac{1}{2}\right)|\eta| t} \frac{\sqrt{|\eta|} V_{n}(x) V_{n}(\tilde{x})}{\sqrt{\pi} 2^{n} n!} \\
& =\sqrt{|\eta|} e^{-\frac{1}{2}|\eta| t} e^{-\frac{|n|}{2}\left(x^{2}+\tilde{x}^{2}\right)} \sum_{n=0}^{\infty} \frac{H_{n}(\sqrt{|\eta|} x) H_{n}(\sqrt{|\eta|} \tilde{x})}{\sqrt{\pi} 2^{n} n!} e^{-n t|\eta|} .
\end{aligned}
$$

In order to calculate the infinite sum we use the Mehler formula:
Lemma (Mehler formula)
Let $|w|<1$, then:

$$
\sum_{n=0}^{\infty} \frac{H_{n}(x) H_{n}(\tilde{x})}{2^{n} n!} w^{n}=\sqrt{\frac{1}{1-w^{2}}} e^{-\frac{(x+\bar{x})^{2}}{4} \frac{w-1}{w+1}-\frac{(x-\tilde{x})^{2}}{4} \frac{w+1}{w-1}}
$$

Heat kernel of the Grushin operator

Lemma

The heat kernel of the operator $L_{\eta}=\frac{1}{2}\left(\frac{\partial^{2}}{\partial x^{2}}-x^{2} \eta^{2}\right)$ with $\eta \neq 0$ has the form:

$$
K_{\eta}(t ; x, \tilde{x})=\frac{1}{\sqrt{\pi}} \sqrt{\frac{\eta}{e^{t \eta}-e^{-t \eta}}} e^{-\frac{\eta}{4}\left\{(x+\tilde{x})^{2} \tanh \frac{\eta t}{2}+(x-\tilde{x})^{2} \operatorname{coth} \frac{\eta t}{2}\right\} .}
$$

Note that:

$$
\sqrt{\frac{\eta}{e^{t \eta}-e^{-t \eta}}}=\frac{1}{\sqrt{2}} \sqrt{\frac{\eta}{\sinh t \eta}}
$$

is an even function in the variable η.
Remark: As $\eta \rightarrow 0$ we recover the well-known heat kernel of the Laplace operator L_{0} on \mathbb{R} which has no eigenvalues:

$$
\lim _{\eta \rightarrow 0} K_{\eta}(t ; x, \tilde{x})=\frac{1}{\sqrt{2 \pi t}} e^{-\frac{\|x-\tilde{x}\|^{2}}{2 t}}, \quad(x, \tilde{x} \in \mathbb{R})
$$

Heat kernel of the Grushin operator
From the heat kernels of $\left(L_{\eta}\right)_{\eta \in \mathbb{R}}$ we calculate the heat kernel of \mathcal{G} :

Lemma

The heat kernel $K^{\mathcal{G}}$ of the Grushin operator

$$
\mathcal{G}=\frac{1}{2}\left(\frac{\partial^{2}}{\partial u^{2}}+u^{2} \frac{\partial^{2}}{\partial v^{2}}\right)=\mathcal{F}^{y} \circ L_{\eta} \circ\left(\mathcal{F}^{y}\right)^{-1}
$$

is obtained by applying the (inverse) Fourier transform to the family of heat kernels of L_{η} :

$$
\begin{aligned}
& K^{\mathcal{G}}(t ; x, y, \tilde{x}, \tilde{y})= \\
& \quad=\frac{1}{(2 \pi)^{\frac{3}{2}}} \int_{\mathbb{R}} e^{i(y-\tilde{y}) \eta} e^{-\frac{\eta}{4}\left\{(x+\tilde{x})^{2} \tanh \frac{t \eta}{2}+(x-\tilde{x})^{2} \operatorname{coth} \frac{t \eta}{2}\right\}} \sqrt{\frac{\eta}{\sinh t \eta}} d \eta
\end{aligned}
$$

Proof: Check that $K^{\mathcal{G}}$ has the properties of the heat kernel. Then, use uniqueness of the heat kernel (which also needs a proof).

How to generalize this?
The Grushin operator looked rather easy.

Ingredients to our proof

- An explicit spectral decomposition of the operators L_{η} when $\eta \neq 0$,
- Mehler formula, which gives an expression of the generating function for the Hermite functions.

Problem: We were very lucky! However, for more general operators such tools may not be available.

Question: The heat kernel does not give a spectral decomposition.

- Can we calculate the heat kernel of \mathcal{G} without knowing the spectral decomposition explicitly and which we may be able to generalize?
- Can some geometry be helpful?

Idea: Compare the heat kernel $K^{\mathcal{G}}$ with the form in the Meta Theorem.

Heat kernel of Grushin operator: a second method
Rewrite the heat kernel of \mathcal{G} by applying a time scaling, i.e. change $t \eta$ to η in the integral:

$$
\begin{aligned}
& K^{\mathcal{G}}(t ; x, y, \tilde{x}, \tilde{y})= \\
& \quad=\frac{1}{(2 \pi t)^{\frac{3}{2}}} \int_{\mathbb{R}} e^{i \frac{(y-\tilde{y}) \eta}{t}} e^{-\frac{\eta}{4 t}\left\{(x+\tilde{x})^{2} \tanh \frac{\eta}{2}+(x-\tilde{x})^{2} \operatorname{coth} \frac{\eta}{2}\right\}} \sqrt{\frac{\eta}{\sinh \eta}} d \eta .
\end{aligned}
$$

We rename the functions appearing in the integration as follows:

$$
\begin{aligned}
S(x, \tilde{x}, \eta) & :=\frac{\eta}{4}\left\{(x+\tilde{x})^{2} \tanh \frac{\eta}{2}+(x-\tilde{x})^{2} \operatorname{coth} \frac{\eta}{2}\right\} \\
V(\eta) & :=\sqrt{\frac{\eta}{\sinh \eta}}=\text { volume element. }
\end{aligned}
$$

Observation: The heat kernel $K^{\mathcal{G}}$ can be written in the form:

$$
K^{\mathcal{G}}(t ; x, y, \tilde{x}, \tilde{y})=\frac{1}{(2 \pi t)^{\frac{3}{2}}} \int_{\mathbb{R}} e^{i \frac{(y-\tilde{y}) \eta}{t}-\frac{S(x, \tilde{x}, \eta)}{t}} V(\eta) d \eta .
$$

Heat kernel of Grushin operator: a second method
Observation: The heat kernel $K^{\mathcal{G}}$ can be written in the form:

$$
K^{\mathcal{G}}(t ; x, y, \tilde{x}, \tilde{y})=\frac{1}{(2 \pi t)^{\frac{3}{2}}} \int_{\mathbb{R}} e^{i \frac{(y-\tilde{-}) \eta}{t}-\frac{S(x, \tilde{x}, \eta)}{t}} V(\eta) d \eta .
$$

"Meta-Theorem"

The heat kernel has the form of a path integral:

$$
K(t ; x, y)=\int_{P_{t}(x, y)} e^{-S_{t}(\gamma)} d \mu_{t}(\gamma) .
$$

(i) $P_{t}(x, y)=$ space of horizontal curves, connecting x and y.
(ii) $S_{t}(\gamma)=\frac{1}{2} \int_{0}^{1}\|\dot{\gamma}(s)\|^{2} d s$ is a classical action
(iii) μ_{t}, a "measure" on the infinite dimensional space $P_{t}(x, y)$.

Heat kernel of Grushin operator: a second method
Aim: Obtain $S=S(x, \tilde{x}, \eta)$ from the solution of a Hamilton system under initial and end condition associated to the Grushin operator.

Let $\eta \neq 0$ and consider the Hamiltonian H^{η} corresponding to the operator

$$
L_{\eta}=\frac{1}{2}\left(\frac{\partial^{2}}{\partial x^{2}}-x^{2} \eta^{2}\right)
$$

Explicitly,

$$
H^{\eta}(x, \xi)=\frac{1}{2}\left(\xi^{2}-x^{2} \eta^{2}\right)
$$

Let $x, \tilde{x} \in \mathbb{R}$ and $t>0$. The induced Hamilton system is given by:

$$
(H S):\left\{\begin{array}{l}
\dot{x}(s)=\frac{\partial H^{\eta}}{\partial \xi}=\xi(s) \\
\dot{\xi}(s)=-\frac{\partial H^{\eta}}{\partial x}=x(s) \eta^{2} \\
x(0)=x \quad \text { and } \quad x(t)=\tilde{x} \quad \text { (initial and end condition). }
\end{array}\right.
$$

Heat kernel of Grushin operator: a second method
This system can be uniquely solved with explicit formulas:

$$
\begin{aligned}
& \left.x(s)=x(s ; t, x, \tilde{x}, \eta)=\frac{\tilde{x} \sinh (s \eta)+x \sinh \eta(t-s)}{\sinh (t \eta)}\right\} \\
& \xi(s)=\xi(s ; t, x, \tilde{x}, \eta)=\dot{x}(s)=\eta \frac{\tilde{x} \cosh (s \eta)-x \cosh (t-s) \eta}{\sinh t \eta}
\end{aligned}
$$

From this solution we build the so-called classical action:

$$
\begin{aligned}
\varphi(x, \tilde{x}, t ; \eta) & =\int_{0}^{t} \underbrace{(\dot{x}(s))^{2}-H^{\eta}(x(s), \xi(s))}_{=L^{\eta}(t ; x, \dot{x})} d s \\
& =\text { "classical action". }
\end{aligned}
$$

Recall from ODE:

The integrand $L^{\eta}(t ; x, \dot{x})$ is called Lagrange function. It is obtained by a Legendre transform of the Hamiltonian: $L^{\eta}=\left(H^{\eta}\right)^{*}$.

Heat kernel of Grushin operator: a second method

Remark

The Hamiltonian H^{η} is constant along solutions to the Hamilton system.

$$
\begin{aligned}
H^{\eta}(x(s), \dot{x}(s)) & \equiv H^{\eta}(x(0), \xi(0)) \quad(\dot{x}=\xi) \\
& =\frac{1}{2}\left(\xi^{2}(0)-x^{2} \eta^{2}\right):=E={ }^{\prime \prime} \text { energy". }
\end{aligned}
$$

From the above expression of ξ :

$$
\xi(0)=\eta \frac{\tilde{x}-x \cosh (t \eta)}{\sinh t \eta}
$$

Inserting these data into the integrand of φ gives (after a calculation):

$$
\varphi(x, \tilde{x}, t ; \eta)=\int_{0}^{t} \underbrace{\dot{x}(s)^{2}-t E}_{=L^{\eta}(t ; x, \dot{x})} d t=\frac{\eta}{4}\left\{(\tilde{x}+x)^{2} \tanh \frac{t \eta}{2}+(x+\tilde{x})^{2} \operatorname{coth} \frac{t \eta}{2}\right\}
$$

Heat kernel of Grushin operator: a second method

Conclusion: The classical action φ in fact appears in the heat kernel expression of the Grushin operator \mathcal{G}.

Lemma

The function $S(x, \tilde{x} ; \eta)$ appearing in the exponent of the heat kernel:

$$
K^{\mathcal{G}}(t ; x, y, \tilde{x}, \tilde{y})=\frac{1}{(2 \pi t)^{\frac{3}{2}}} \int_{\mathbb{R}} e^{i \frac{(y-\tilde{y}) \eta}{t}-\frac{S(x, \tilde{x}, \eta)}{t}} V(\eta) d \eta .
$$

coincides with the classical action of the Hamiltonian system (HS) at the time $t=1$:

$$
S(x, \tilde{x}, \eta)=\varphi(x, \tilde{x}, 1 ; \eta)=\text { "classical action" }
$$

Hence: In order to find this part of the heat kernel we need not to "pass through" the spectrum of \mathcal{G}.

Heat kernel of Grushin operator: more equations
Know from PDE: the classical action φ solves the

"Hamilton-Jacobi equation".

Roughly speaking: the "PDE for the geodesic distance", i.e.:

$$
\begin{equation*}
\frac{\partial \varphi}{\partial t}(x, \tilde{x}, t ; \eta)+H^{\eta}\left(\tilde{x}, \frac{\partial}{\partial \tilde{x}} \varphi(x, \tilde{x}, t ; \eta)\right)=0 \tag{HJE}
\end{equation*}
$$

Corollary (Generalized Hamilton Jacobi equation)

The function $S(x, \tilde{x} ; \eta)$ in the exponent of the integrant of $K^{\mathcal{G}}$ solves the so-called "generalized Hamilton-Jacobi equation":

$$
H^{\eta}\left(\tilde{x}, \frac{\partial}{\partial \tilde{x}} S(x, \tilde{x} ; \eta)\right)+\eta \frac{\partial S}{\partial \eta}(x, \tilde{x} ; \eta)=S(x, \tilde{x} ; \eta)
$$

Proof: (HJE) and $S(x, \tilde{x} ; t \eta)=\varphi(x, \tilde{x}, 1 ; t \eta)=t \varphi(x, \tilde{x}, t ; \eta)$.

Heat kernel of Grushin operator: more equations
Take a second look at the heat kernel of the Grushin operator:

$$
K^{\mathcal{G}}(t ; x, y, \tilde{x}, \tilde{y})=\frac{1}{(2 \pi t)^{\frac{3}{2}}} \int_{\mathbb{R}} e^{i\left(\frac{(x-\tilde{y}) \eta}{t}-\frac{s(x, \tilde{x}, n)}{t}\right.} V(\eta) d \eta .
$$

Question: How to interpret the function $V(\eta)$ (the "volume element")?

Correspondence

Fix the following values:

$$
t=\text { time }, \quad x=\text { initial condition } \quad \text { and } \quad \eta \neq 0
$$

and consider the correspondence \mathcal{V} between final condition \tilde{x} and the value of the dual variable ξ at time $s=0$:

$$
\mathcal{V}(\cdot ; t, x, \eta): \tilde{x} \mapsto \xi(0 ; t, x, \tilde{x}, \eta)
$$

Since we have an explicit formula for ξ we obtain \mathcal{V} explicitly, namely:

$$
\mathcal{V}(\tilde{x} ; t, x, \eta)=\frac{\eta}{\sinh (t \eta)}(\tilde{x}-x \cosh (t \eta))
$$

Heat kernel of Grushin operator: more equations
We make the following observation:

Lemma

Let $V(\eta)$ be the volume element in the heat kernel expression.
(a) The function V and \mathcal{V} are related by the equation:

$$
\sqrt{\frac{\partial \mathcal{V}}{\partial \tilde{x}}(\tilde{x} ; t, x, \eta)}=\sqrt{\frac{\eta}{\sinh \eta}}=V(\eta)
$$

(b) The volume element solves the transport equation:

$$
\eta \frac{\partial V}{\partial \eta}-\left(-\mathcal{G} S(0, \tilde{x} ; \eta)+\frac{1}{2}\right) V=0
$$

Question: Can these observations for the low dimensional model of the Grushin operator be generalized to obtain the heat kernel of the sub-Laplacian $\Delta_{\text {sub }}$ on nilpotent Lie groups (without spectral decompositions)?

Sub-Laplacian on step-2 nilpotent Lie groups

Let $(G, *)$ be a step- 2 nilpotent Lie group with Lie algebra:

$$
\mathfrak{g}=V_{1} \oplus V_{2}
$$

such that

$$
\left[V_{1}, V_{1}\right]=V_{2} \quad \text { and } \quad\left[V_{1}, V_{2}\right]=\left[V_{2}, V_{2}\right]=0
$$

Consider an inner product $\langle\cdot, \cdot\rangle$ on V_{1} and choose

$$
\underbrace{\left[X_{1}, \cdots, X_{m}\right]}=\text { "orthonormal basis of } V_{1} " \text {. }
$$

left-invariant vector fields on G
Choose now a basis [Y_{m+1}, \cdots, Y_{n}] of V_{2} and write:

$$
\left[X_{i}, X_{j}\right]=\sum_{\ell=m+1}^{n} c_{i j}^{\ell} Y_{\ell}, \quad \text { and } \quad\left[X_{i}, Y_{\ell}\right]=0=\left[Y_{\ell}, Y_{h}\right] .
$$

Definition

We call the skew-symmetric matrices $\left(c_{i j}\right)_{i j}^{\ell} \in \mathbb{R}^{m \times m}$ for $\ell=m+1, \ldots, n$ the structure constants.

Sub-Laplacian on step-2 nilpotent Lie groups

Identity X_{i} with the left-invariant vector fields on $\mathbb{R}^{n} \cong G$:

$$
\widetilde{x}_{i}:=\frac{\partial}{\partial x_{i}}-\frac{1}{2} \sum_{j=1}^{m} \sum_{\ell=m+1}^{n} x_{j} c_{i j}^{\ell} \frac{\partial}{\partial y_{\ell}}
$$

Consider the left-invariant sub-Laplacian:

$$
\Delta_{\text {sub }}=\frac{1}{2} \sum_{i=1}^{m} \widetilde{X}_{i}^{2}=\frac{1}{2} \sum_{i=1}^{m}\left[\frac{\partial}{\partial x_{i}}-\frac{1}{2} \sum_{j=1}^{m} \sum_{\ell=m+1}^{n} x_{j} c_{i j}^{\ell} \frac{\partial}{\partial y_{\ell}}\right]^{2} .
$$

Lemma

The heat kernel $K_{\text {sub }} \in C^{\infty}\left(\mathbb{R}_{+} \times G \times G\right)$ is a "convolution kernel", i.e.

$$
K_{\text {sub }}(t ; g, h)=k\left(t, g^{-1} * h\right) \quad \text { where } \quad k(t, g) \in C^{\infty}(\mathbb{R} \times G)
$$

such that

(a) $\left(\frac{\partial}{\partial t}-\Delta_{\text {sub }}\right) k(t, g)=0$.
(b) $\lim _{t \downarrow 0} k(t, \cdot)=\delta_{e}=$ delta-distribution at $e \in G$, where e is the unit.

Sub-Laplacian on step-2 nilpotent Lie groups

Question: How can we find $k(t, g)$?
According to the form of the heat kernel $K^{\mathcal{G}}$ for the Grushin operator (or based on the Meta theorem) we try the following Ansatz:

$$
\begin{equation*}
k(t, g)=\frac{1}{t^{\rho}} \int_{\mathbb{R}^{d}} e^{\frac{f(g, \eta)}{t}} V(g, \eta) d \eta \tag{3}
\end{equation*}
$$

Here we have the following ingredients (which need to be determined):

- $\rho \geq 0$,
- $d=n-m=\operatorname{dim} V_{2}=$ dimension of the center of \mathfrak{g}
- $f=f(g, \eta) \in C^{\infty}\left(G \times \mathbb{R}^{d}\right)=$ "complex action function".
- $V=V(g, \eta) \in C^{\infty}\left(G \times \mathbb{R}^{d}\right)=$ "volume element".

Idea: Find conditions on ρ, f and V such that properties of the last Lemma hold.

Complex Hamilton-Jacobi Theory

The corresponding analysis is called
"Complex Hamilton Jacobi theory".
Repeating what we did for the Gruhsin operator \mathcal{G}, it goes like this:
Method to determine f and V :
(a) Construct the complex action function $f(g, \eta)$ by uniquely solving a Hamiltonian system under
"initial-final conditions."
(b) Construct the volume element $V(\eta)$ from the Jacobian of the correspondence between the final and initial condition of the Hamiltonian system (van Vleck determinant).

Let $z=\left(z_{1}, \ldots, z_{\ell}\right)^{t} \in \mathbb{R}^{n-m}$ and define the matrix-valued function:

$$
\Omega(z)=\sum_{k=1}^{d} z_{k}\left(c_{i j}^{k}\right)_{i, j} \in \mathbb{R}^{m \times m}
$$

Heat kernel: the formula

Theorem (Beals-Gaveau-Greiner formula)

The integral kernel $K_{\text {sub }}$ (= heat kernel) of the heat operator

$$
\frac{\partial}{\partial t}-\Delta_{\text {sub }} \quad \text { on } \quad \mathbb{R}_{+} \times G
$$

has the form:

$$
K_{\text {sub }}(t, g, h)=k\left(t, g^{-1} * h\right)=\frac{1}{(2 \pi t)^{m / 2+d}} \int_{\mathbb{R}^{d}} e^{-\frac{f\left(g^{-1} * h, \eta\right)}{t}} V(\eta) d \eta
$$

Put $g=(x, z) \in \mathbb{R}^{m} \times \mathbb{R}^{d}$, then:

$$
\begin{aligned}
& f(g, \eta)=f(x, z, \eta)=i\langle\eta, z\rangle+\frac{1}{2}\langle\Omega(i \eta) \operatorname{coth}(\Omega(i \eta)) \cdot x, x\rangle \\
& V(\eta)=\left\{\operatorname{det} \frac{\Omega(i \eta)}{\sinh \Omega(i \eta)}\right\}^{1 / 2} .
\end{aligned}
$$

Heat kernel: related PDE
Let $H(x, \xi)$ denote the Hamiltonian of $\Delta_{\text {sub }}$:

Remark

Generalizing our observation in the case of the Grushin operator the functions f and V solve certain PDE:

- The action function f solves the generalized Hamilton-Jacobi equation.

$$
\begin{equation*}
H\left(x, \nabla_{g} f\right)+\sum_{i=1}^{d} \eta_{\ell} \frac{\partial}{\partial \eta_{\ell}} f(g, \eta)=f(g, \eta) \tag{GHJE}
\end{equation*}
$$

- With a solution $f(g, \eta)$ to Equation (GHJE) the volume element $V(g, \eta)$ solves the transport equation:

$$
\sum_{i=1}^{\ell} \eta_{i} \frac{\partial V}{\partial \eta_{i}}-\left(\Delta_{\text {sub }}(f)+\frac{m}{2}\right) V=0
$$

Heat kernel: sub-Laplacian on the Heisenberg group
Example: We specialize the last theorem to the heat kernel of the sub-Laplacian on the Heisenberg group \mathbb{H}_{3}.

Bracket relation: (Heisenberg Lie algebra \mathfrak{h}_{3}): Here $m=2$ and $d=1$:

$$
[X, Y]=Z, \quad \text { where } \quad \mathfrak{h}_{3}=\operatorname{span}\{X, Y, Z\} .
$$

We obtain the matrix of structure constants

$$
\Omega(z)=z\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & z \\
-z & 0
\end{array}\right), \quad \text { where } \quad z \in \mathbb{R} .
$$

Observation: the matrices $\Omega(i \eta)$ are selfadjoint:

$$
\Omega(i \eta)=\Omega(i \eta)^{*} \quad \text { for all } \quad \eta \in \mathbb{R}
$$

and can be diagonalized with eigenvalues

$$
\lambda_{ \pm}= \pm \eta .
$$

Heat kernel: sub-Laplacian on the Heisenberg group
Here are all functions that appear in the representation of the heat kernel:
Ingredients to the heat kernel

- volume element: $V(\eta)$ is given by:

$$
V(\eta)^{2}=\operatorname{det}\left(\begin{array}{cc}
\frac{\eta}{\sinh \eta} & 0 \\
0 & \frac{-\eta}{\sinh (-\eta)}
\end{array}\right)=\frac{\eta^{2}}{\sinh ^{2}(\eta)} .
$$

- action function: $f=f(x, y, z ; \eta)$ is given by:

$$
f(x, y, z ; \eta)=i \eta z+\frac{\eta}{2} \operatorname{coth}(\eta)\left(x^{2}+y^{2}\right)
$$

- convolution: Let $g=(x, y, z), h=(\tilde{x}, \tilde{y}, \tilde{z}) \in \mathbb{H}_{3}$. Then,

$$
g^{-1} * h=-g * h=\left(-x+\tilde{x},-y+\tilde{y},-z+\tilde{z}+\frac{1}{2}(-x \tilde{y}+\tilde{x} y)\right)
$$

Heat kernel: sub-Laplacian on the Heisenberg group

Theorem

The heat kernel of the sub-Laplace operator $\Delta_{\text {sub }}$ on \mathbb{H}_{3} has the explicit form:

$$
\begin{aligned}
& K_{\text {sub }}(t ; g, h)=k\left(t, g^{-1} * h\right) \\
& \quad=\frac{1}{(2 \pi t)^{2}} \int_{\mathbb{R}} e^{i \eta\left(z-\tilde{z}+\frac{\tilde{y}-\tilde{y} y}{2}\right)+\frac{\eta}{2 t} \operatorname{coth} \eta\left\{(x-\tilde{x})^{2}+(y-\tilde{y})^{2}\right\}} \cdot \frac{\eta}{\sinh \eta} d \eta .
\end{aligned}
$$

From sub-Laplacian to Grushin

Grushin operator: revisited:

Recall: the Grushin operator \mathcal{G} on \mathbb{R}^{2} :

$$
\mathcal{G}=\frac{1}{2}\left(\frac{\partial^{2}}{\partial u^{2}}+u^{2} \frac{\partial^{2}}{\partial v^{2}}\right)
$$

is related to the sub-Laplacian $\Delta_{\text {sub }}$ on \mathbb{H}_{3} via:

$$
\Delta_{\text {sub }} \circ(\tilde{\pi})^{*}=(\tilde{\pi})^{*} \circ \mathcal{G},
$$

where π is the canonical projection:

$$
\pi: \mathbb{H}_{3} \rightarrow N_{Y} \backslash \mathbb{H}_{3} \cong \mathbb{R}^{2} \text { and } N_{Y}:=\left\{(0, t, 0) \in \mathbb{H}_{3}: t \in \mathbb{R}\right\} \stackrel{\text { subgroup }}{\subset} \mathbb{H}_{3} .
$$

Aim: From the above explicit expression of the heat kernel of $\Delta_{\text {sub }}$ we can re-obtain the heat kernel of \mathcal{G} via a "fiber integration".

From sub-Laplacian to Grushin

Here is the way it works:
Consider again the global trivialization of $\pi: \mathbb{H}_{3} \rightarrow N_{Y} \backslash \mathbb{H}_{3} \cong \mathbb{R}^{2}$:

$$
\varphi: N_{Y} \times\left(N_{Y} \backslash \mathbb{H}_{3}\right) \cong \mathbb{R} \times \mathbb{R}^{2} \ni(a, u, v) \mapsto\left(u, a, v-\frac{a u}{2}\right) \in \mathbb{R}^{3} \cong \mathbb{H}_{3}
$$

In particular, φ is a diffeomorphism with

$$
\pi \circ \varphi\left(a, N_{Y} g\right)=N_{Y} g
$$

Lemma

The heat kernels $K^{\mathcal{G}}$ of \mathcal{G} and $K_{\text {sub }}$ of $\Delta_{\text {sub }}$ are related via:

$$
K^{\mathcal{G}}(t ; \underbrace{\pi(x)}_{\in \mathbb{R}^{2}}, y)=\int_{\mathbb{R}} K_{\text {sub }}(t ; x, \varphi(\underset{\uparrow}{a}, y)) d a .
$$

Here $x \in \mathbb{H}_{3}$ and $y \in \mathbb{R}^{2}$. Note that $\pi: \mathbb{H}_{3} \rightarrow \mathbb{R}^{2}$ is surjective.

A Question

Question: Can we generalize the Beals-Gaveau-Greiner Theorem and as well calculate the heat kernel of the sub-Laplacian on

$$
\text { "Carnot groups of step } r>2 \text { "? }
$$

Maybe no: As we have discussed in the last lecture in relation with the Engel group.

Heat kernel: sub-Laplacian on the Heisenberg group

Theorem

The heat kernel of the sub-Laplace operator $\Delta_{\text {sub }}$ on \mathbb{H}_{3} has the explicit form:

$$
\begin{aligned}
& K_{\text {sub }}(t ; g, h)=k\left(t, g^{-1} * h\right) \\
& \quad=\frac{1}{(2 \pi t)^{2}} \int_{\mathbb{R}} e^{i \eta\left(z-\tilde{z}+\frac{x \tilde{y}-\tilde{x} y}{2}\right)+\frac{\eta}{2 t} \operatorname{coth} \eta\left\{(x-\tilde{x})^{2}+(y-\tilde{y})^{2}\right\}} \cdot \frac{\eta}{\sinh \eta} d \eta .
\end{aligned}
$$

Question: Can we generalize the formula and calculate the heat kernel of the sub-Laplacian on

$$
\text { "Carnot groups of step } r>2 \text { "? }
$$

What it is good for?

Subriemannian geodesics on the Heisenberg group \mathbb{H}_{3}

Figure: $S R$ geodesic on \mathbb{H}_{3} and isoperimetric problem in the plane.

Heat kernel/trace expansion
Even if we do not an explicit formula we may apply asymptotic results: Here are examples:

Theorem (Ben Arous, Leandré)
Let $(M, \mathcal{H},\langle\cdot, \cdot\rangle)$ be a $S R$ manifold and $q \in M$. Let $N \in \mathbb{N}$:

$$
K(t, q, q)=\frac{1}{t^{\frac{Q(q)}{2}}}\left(c_{0}(q)+c_{1}(q) t+\cdots c_{N}(q) t^{N}+O\left(t^{N+1}\right)\right)
$$

as $t \downarrow 0$. Here:
$Q(q)=$ Hausdorff dimension with respect to the $d_{c c}$-metric.
Definition: We call the coefficients heat invariants.
Problem: What is the "geometric content" of the heat invariants in this subelliptic setting, or \cdots
"Can one hear the subriemannian structure?"

More asymptotic relations

Theorem (Leandré)
Let $x, y \in(M, \mathcal{H},\langle\cdot, \cdot\rangle)$, then

$$
\lim _{t \downarrow 0} t \log K(t, x, y)=-\frac{d_{c c}(x, y)^{2}}{2} .
$$

The heat kernel contains information on the $d_{c c}$-metric.

Theorem

Let M be compact and equiregular. Then we have a heat trace expansion:

$$
\operatorname{trace}\left(e^{t \Delta_{\text {sub }}}\right) \sim \frac{1}{t^{\frac{Q}{2}}}\left(\alpha_{0}+\alpha_{1} t+\alpha_{2} t^{2} \cdots\right) \quad t \downarrow 0 .
$$

A Theorem, a Question and a first Answer:

$G=$ nilpotent Lie group (e.g. nilpotentization) with lattice $\Gamma \subset G$.

$$
M=\Gamma \backslash G=\text { compact nilmanifold. }
$$

Theorem (W. Bauer, K. Furutani, C. Iwasaki 2012)
Assume that G^{a} is of step 2 and let $\Delta_{\text {sub }}^{\Gamma}$ be the intrinsic sub-Laplace operator on M. Then:

$$
\operatorname{trace}\left(e^{t \Delta_{\text {sul }}^{\ulcorner }}\right)=\frac{C}{t^{\frac{m}{2}+d}}+O\left(t^{\infty}\right) \quad \text { as } \quad t \rightarrow 0 .
$$

Here C is explicitly known and encodes the Popp volume of M.

$$
\begin{aligned}
& \operatorname{dim} M=m+d, \quad d=\operatorname{dim} \text { center } \mathfrak{g} \quad \longleftarrow \text { Lie algebra of } \mathrm{G} \\
& \frac{m}{2}+d=\frac{1}{2} \times\left\{\text { Hausdorff dimension of }\left(M, d_{c c}\right)\right\} .
\end{aligned}
$$

[^2]
Question:

Under the conditions of the last theorem:

Questions

(a) Which geometric data can we recover from the spectrum of the sub-Laplace operator (inverse spectral problem), e.g.:

Can we read from the spectrum of $\Delta_{\text {sub }}$ the manifold dimension $\operatorname{dim} M=m+d$?
(b) Does the theorem hold for nilpotent Lie groups of step ≥ 3 ?

Answer to (a): In some specific cases Yes, (K. Furutani, 2020). But unknown in general.
Answer to (b): Yes!
The short-time asymptotic expansion of the heat kernel on any nilmanifold contains only a single non-trivial term. This is true in an even more general setting (V. Fischer, 2022). ${ }^{2}$
${ }^{2}$ V. Fischer, Asymptotic and zeta function on compact nilmanifolds, J. Math. Pures Appl. 160, 1-28, 2022.

Conclusion:

Some intuition: The last result - roughly speaking - indicates:
Carnot groups (nilpotent Lie groups), which are the local models of a $S R$ manifold are "flat" spaces in SR geometry.

However: they are not flat as Riemannian manifolds.

Next Aim

Consider certain "curved SR manifolds". Study the short time heat kernel asymptotic via the local models (step 2 Carnot groups).

Questions:

- What means curvature in this framework?
- Can we express the second heat invariant via curvature terms?

H-type foliation and second heat invariant

Aim: We consider the intrinsic sub-Laplace operator on Clifford bundles in SR geometry. The local models are H-type groups.

Short review on H-type foliations:

Let (M, g) be a Riemannian manifold with metric g and of dimension $\operatorname{dim} M=n+m$. Assume that M is equipped with a

"Riemannian foliation"

locally being a Riemannian submersion (with bundle-like metric).
Example: Riemannian foliation may be induced by a Riemannian submersion (e.g. a principal bundle).
Define (locally)
$\mathcal{V}=$ vertical bundle: formed by vectors tangent to the leaves, $\mathcal{H}=$ horizontal bundle: orthogonal to \mathcal{V}.

Example: Quaternionic Hopf fibration

H-type foliation and second heat invariant

Induced splitting of tangent spaces and metric: For all $q \in M$:

$$
T_{q} M=\mathcal{H}_{q} \oplus \mathcal{V}_{q} \quad \text { and } \quad \underset{\substack{\mathcal{A}} \underset{\mathcal{H}}{ } \quad \oplus \mathcal{V} .}{\text { restriction of } g \text { to } \mathcal{H}}
$$

Assumptions:

- bundle-like complete metric: for all $X \in \Gamma(\mathcal{H}), Z \in \Gamma(\mathcal{V})$:

$$
\left(\mathcal{L}_{X} g\right)(Z, Z)=0
$$

Geodesics tangent to \mathcal{H} at some point remain tangent to \mathcal{H}.

- totally geodesic: for all $X \in \Gamma(\mathcal{H}), Z \in \Gamma(\mathcal{V})$:

$$
\left(\mathcal{L}_{Z} g\right)(X, X)=0
$$

All leaves are totally geodesic submanifolds.

H-type foliation and second heat invariant
Known: Under these assumptions there is a canonical connection ∇ on M preserving metric and foliation structure called
"Bott connection."

Theorem and Definition

The Bott connection on a totally-geodesic foliation with bundle-like metric is uniquely characterized by the following properties:

- (metric): $\nabla g=0$,
- (compatible): For $X \in \Gamma(T M): \nabla_{X} \mathcal{H} \subset \mathcal{H}$ and $\nabla_{X} \mathcal{V} \subset \mathcal{V}$,
- (torsion): The torsion

$$
T(X, Y):=\nabla_{X} Y-\nabla_{Y} X-[X, Y]
$$

satisfies:

$$
T(\mathcal{H}, \mathcal{H}) \subset \mathcal{V} \quad \text { and } \quad T(\mathcal{H}, \mathcal{V})=T(\mathcal{V}, \mathcal{V})=0 .
$$

H-type foliation and second heat invariant

Definition (J-map)

For every $Z \in \Gamma(\mathcal{V})$ define a bundle endomorphism $J_{Z}: \mathcal{H} \rightarrow \mathcal{H}$ by

$$
g\left(J_{Z} X, Y\right)=g(Z, T(X, Y))
$$

The next result implies that $\left(M, \mathcal{H}, g_{\mathcal{H}}\right)$ under a suitable condition defines a SR manifold:

Lemma

Suppose that the H-type condition:

$$
J_{Z}^{2}=-g(Z, Z) \mid d_{\mathcal{H}} \quad \text { for all } \quad Z \in \Gamma(\mathcal{V})
$$

is satisfied. Then $T_{q} M$ at any $q \in M$ is generated by $[X, \mathcal{H}]_{q}$ and \mathcal{H}_{q} for every horizontal vector field $X \in \Gamma(\mathcal{H})$ with $X_{q} \neq 0$.

Remark: We call \mathcal{H} strongly bracket generating or fat.

H-type foliation and second heat invariant

Definition (H-type foliation)

The SR manifold $\left(M, \mathcal{H}, g_{\mathcal{H}}\right)$ is called an H-type foliation if the H-type condition is satisfied.

Remark:

- This class contains many classical examples.
- Recently such foliations were studied (also under additional assumptions) in:
F. Baudoin, E. Grong, L. Rizzi, G. Vega-Molino, H-type foliations, arXiv 2021.

Some examples of (compact) H-type foliations

Structure	Torsion
Complex Type, $m=1, n=2 k$	YM
K-Contact	CP
Sasakian	CP
Heisenberg Group	CP
Hopf Fibration $\mathbb{S}^{1} \hookrightarrow \mathbb{S}^{2 k+1} \rightarrow \mathbb{C} P^{k}$	CP
Anti de-Sitter Fibration $\mathbb{S}^{1} \hookrightarrow$ AdS $^{2 k+1}(\mathbb{C}) \rightarrow \mathbb{C} H^{k}$	
Twistor Type, $m=2, n=4 k$	HP
Twistor space over quaternionic Kähler manifold	HP
Projective Twistor space $\mathbb{C P} P^{1} \hookrightarrow \mathbb{C} P^{2 k+1} \rightarrow \mathbb{H} P^{k}$	HP
Hyperbolic Twistor space $\mathbb{C P} \mathbb{P}^{1} \hookrightarrow \mathbb{C} H^{2 k+1} \rightarrow \mathbb{H} H^{k}$	
Quaternionic Type, $m=3, n=4 k$	YM
3K-contact	YM
Negative 3K-contact	HP
3-Sasakian	HP
Negative 3-Sasakian	CP
Torus bundle over hyperkähler manifolds	CP
Quaternionic Heisenberg Group	HP
Quaternionic Hopf Fibration $\mathbf{S U}(2) \hookrightarrow \mathbb{S}^{4 k+3} \rightarrow \mathbb{H} P^{k}$	HP
Quaternionic Anti de-Sitter Fibration $\mathbf{S U}(2) \hookrightarrow \mathbf{A d S}{ }^{4 k+3}(\mathbb{H}) \rightarrow \mathbb{H} H^{k}$	
Octonionic Type, $m=7, n=8$	CP
Octonionic Heisenberg Group	HP
Octonionic Hopf Fibration $\mathbb{S}^{7} \hookrightarrow \mathbb{S}^{15} \rightarrow \mathbb{O} P^{1}$	HP
Octonionic Anti de-Sitter Fibration $\mathbb{S}^{7} \hookrightarrow$ AdS ${ }^{15}(\mathbb{O}) \rightarrow \mathbb{O} H^{1}$	CP
H-type Groups, m is arbitrary	

H-type foliation and second heat invariant

Consider now a local horizontal frame X_{1}, \ldots, X_{n} of \mathcal{H}, i.e. X_{j} are pointwise orthonormal horizontal vector fields such that

$$
\mathcal{H}_{q}=\operatorname{span}\left\{X_{1}, \ldots, X_{n}\right\}_{q} \quad \text { for all } \quad q \in M
$$

Correspondingly, consider the metric dual frame $\left\{\theta^{1}, \ldots, \theta^{n}\right\}$.

curvature

The Bott connection induces a curvature tensor in the usual way:

$$
R(X, Y) Z:=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z
$$

H-type foliation and second heat invariant

Definition (horizontal scalar curvature)

We define the following " horizontal objects":

$$
R_{\alpha \beta \gamma}^{\delta}:=\theta^{\delta}\left(R\left(X_{\alpha}, X_{\beta}\right) X_{\gamma}\right) \quad \text { with } \quad \alpha, \beta, \gamma, \delta=1, \ldots, n .
$$

The horizontal scalar curvature of the Bott connection is given by:

$$
\kappa_{\mathcal{H}}:=\sum_{\alpha, \beta=1}^{n} R_{\alpha \beta \beta}^{\alpha}
$$

Note: the value of $\kappa_{\mathcal{H}}$ is independent of the choice of the orthonormal horizontal frame and of its vertical complement.

H-type foliation and second heat invariant

We define a second local invariant which is a "vertical object".

Definition

For vertical vector fields $Z, W \in \Gamma(\mathcal{V})$ consider the bundle-like operator

$$
M(Z, W): \Gamma(\mathcal{H}) \longrightarrow \Gamma(\mathcal{H})
$$

defined by

$$
M(Z, W) X:=J_{W} J_{Z}\left(\nabla_{Z} J\right)_{W} X
$$

With a given orthonormal frame $\left\{Z_{1}, \ldots, Z_{m}\right\}$ of the vertical distribution \mathcal{V} we define the function:

$$
\tau_{\mathcal{V}}:=\sum_{i, j=1}^{m} \stackrel{\substack{\text { matrix trace } \\ \operatorname{trace}}}{\operatorname{trac}}\left(M\left(Z_{i}, Z_{j}\right)\right)
$$

Note: τ_{ν} is independent of the choice of the vertical frame.

Example

Under some additional assumptions on the H-type foliation we can interpret the vertical quantity $\tau_{\mathcal{V}}$ more geometrically:

Theorem

Let $m \geq 2$. Assume that

- the torsion T is horizontally parallel, i.e.

$$
\nabla_{X} T=0, \quad X \in \Gamma(\mathcal{H})
$$

- the sectional curvature $\kappa \mathcal{V}$ of the leaves is a positive constant.

Then we have:

$$
\tau_{\mathcal{V}}=m(m-1) \sigma \sqrt{\kappa \mathcal{V}},
$$

with $\sigma \in \mathbb{Z}$ being the difference between positive and negative eigenvalues of the symmetric part of $M(Z, W)$, where Z, W are any linear independent vertical vector fields.

H-type foliation and second heat invariant

Now we can formulate our main result:
Theorem (W.-B., I. Markina, A. Laaroussi, G. Vega-Molino, 2022) Let $\left(M, \mathcal{H}, g_{\mathcal{H}}\right)$ be an H-type foliation with intrinsic sub-Laplace operator

$$
\Delta_{\text {sub }}=\operatorname{div}_{\omega_{\text {Popp }}} \circ \operatorname{grad}_{\mathcal{H}}
$$

Moreover, assume that the torsion induced by the Bott connection is horizontally parallel, i.e. $\nabla_{\mathcal{H}} T=0$.

- With $q \in M$ the heat kernel $K_{\text {sub }}$ of $\Delta_{\text {sub }}$ has a short time asymptotic expansion of the form

$$
K_{\text {sub }}(t ; q, q)=\frac{1}{t^{\frac{n}{2}+m}}\left(c_{0}(q)+c_{1}(q) t+O\left(t^{3}\right)\right) \quad \text { as } \quad t \downarrow 0
$$

H-type foliation and second heat invariant

Theorem (continued)

- The second heat invariant $c_{1}(q)$ is a linear combination of the local invariants $\kappa_{\mathcal{H}}$ and $\tau_{\mathcal{V}}$ above:

$$
c_{1}(q)=C_{1} \cdot \kappa_{\mathcal{H}}(q)+C_{2} \cdot \tau_{\mathcal{V}}(q), \quad q \in M
$$

where C_{1} and C_{2} are universal constants only depending on $n=\operatorname{rank} \mathcal{H}$ and $m=\operatorname{rank} \mathcal{V}$.

References

國 W.-B. I. Markina, A. Laaroussi, G. Vega-Molino Local Invariants and Geometry of the sub-Laplacian on H-type Foliations, arXiv:2209.02168, 2022.

圊
R. Beals, B. Gaveau, P. Greiner, Hamilton-Jacobi theory and the heat kernel on Heisenberg groups, J. Math. Pures Appl. 79(7) (2000), 633-689.
? O. Calin, D.-C. Chang, K. Furutani, C. Iwasaki, Heat kernels for elliptic and sub-elliptic operators. Methods and techniques, Appl. Numer Harmonic Analysis. Birkhäuser/Springer, New York, 2011.

Thank you for your attention!

Distribution and horizontal curve

Front of SR geodesics at time T (picture by: U. Boscain, D. Barilari)

[^0]: ${ }^{1}$ Robert S. Strichartz. Sub-Riemannian geometry. J. Differential Geom., 24(2):221 263, 1986.

[^1]: ${ }^{\text {a }}$ O. Calin, D.-C. Chang, K. Furutani, C. Iwasaki, Heat kernels for elliptic and sub-elliptic operators. Methods and techniques, Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, New York, 2011.

[^2]: ${ }^{a}$ e.g. G can be the Heisenberg group

