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The SR heat kernel: revisited

Aim: We look for explicit formulas for the heat kernel of the Sub-Laplace
operator on nilpotent Lie groups.

Definition

The heat kernel of the sub-Laplacian ∆sub on an SR manifold (M,H, ⟨·, ·⟩)
denoted by:

K (t; x , y) : (0,∞)×M ×M −→ R

is the fundamental solution of the heat operator:

P :=
∂

∂t
−∆sub,

i.e. K (t; x , y) fulfills{
PK (t; ·, y) = 0, for all t > 0

limt↓0 K (t; x , ·) = δx , in the distributional sense.
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The SR heat kernel: revisited

From now on assume: (M, dCC ) is complete as a metric space.

Remarks: Abstractly, the following is known:

∆sub is essentially selfadjoint on C∞
c (M). Existence and uniqueness

of the heat kernel is guaranteed. 1

Hörmander’s Theorem also implies the hypoellipticity of the SR heat
operator

P :=
∂

∂t
−∆sub.

In fact, the SR heat kernel K solves

PK (t; ·, y) = 0.

K is symmetric in the space variables, i.e. K (t; x , y) = K (t; y , x).
Hence, K is a smooth kernel.

1Robert S. Strichartz. Sub-Riemannian geometry. J. Differential Geom., 24(2):221 -
263, 1986.
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The heat kernel: A bridge between analysis and geometry

Intuition: Let x , y ∈ M, (Riemannian manifold):

heat kernel = K (t; x , y) =”heat flowing from x to y at time t.”

”Meta-Theorem”, (Not a precise mathematical statement)

The heat kernel of the sub-Laplacian ∆sub has the form of a path integral:

K (t; x , y) =

∫
Pt(x ,y)

e−St(γ)dµt(γ).

(i) Pt(x , y) = space of horizontal curves, connecting x and y .

(ii) St(γ) is a classical action St(γ) =
1
2

∫ 1
0 ∥γ̇(s)∥

2ds.

(iii) µt , a ”measure” on the infinite dimensional space Pt(x , y).
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The heat kernel: A bridge between analysis and geometry

Question: How to calculate heat kernels in some examples (if possible)?

In general, it is not possibly to calculate the heat kernel explicitly (and
may not even be useful). However,

Remark

For specific classes of subelliptic operators (including some
sub-Laplace operators) methods and formulas are available, e.g. a

”Complex Hamilton-Jacobi method”.

Asymptotic properties are more easily obtained even without having
explicit formulas.

a O. Calin, D.-C. Chang, K. Furutani, C. Iwasaki, Heat kernels for elliptic and
sub-elliptic operators. Methods and techniques, Applied and Numerical Harmonic
Analysis. Birkhäuser/Springer, New York, 2011.
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A model operator

Aim: To get an idea we start with a model operator for which we can
calculate the heat kernel ”by hand”.

Consider the 3-dimensional Heisenberg group (H3
∼= R3, ∗) with product

(
x1, y1, z1

)
∗
(
x2, y2, z2

)
=
(
x1 + x2, y1 + y2, z1 + z2 +

1

2

(
x1y2 − x2y1

))
.

Corresponding Heisenberg Lie algebra:

h3 = span
{
X ,Y ,Z

}
where [X ,Y ] = Z ,

where X ,Y ,Z are left-invariant vector fields on H3:

(Hypoelliptic) sub-Laplace operator

∆sub =
1

2

(
X 2 + Y 2

)
=

1

2

(
∂

∂x
− y

2

∂

∂z

)2

+
1

2

(
∂

∂y
+

x

2

∂

∂z

)2

.
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A model operator
Model: For simplicity we reduce the space dimension from three to two.

Consider the (abelian) subgroup:

NY =
{
(0, t, 0) : t ∈ R

}
⊂ (H3, ∗)

and the projection π : H3 −→ NY \H3 : g 7→ NY g onto the left-quotient.

Lemma

The map ρ below is well-defined and invertible (a diffeomorphism):

ρ : NY \H3 → R2 : NY ∗ (x , y , z) 7→
(
x , z +

xy

2

)
∈ R2.

Well-definedness: Let t ∈ R:

NY ∗ (0, t, 0) ∗ (x , y , z) = NY ∗
(
x , y + t, z − xt

2

)
ρ7→(

x , z − xt

2
+

1

2
x
(
y + t

))
=
(
x , z +

xy

2

)
.
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A model operator
Via composition we obtain a map:

π̃ = ρ ◦ π : H3
π−→ NY \H3

ρ−→∼= R2 : (x , y , z) 7→ (x , z +
xy

2
).

As usual let (π̃)∗ denotes the pullback of functions along π̃:

(π̃)∗ : C∞(R2
)
→ C∞(H3

)
: f 7→ f ◦ π̃.

Lemma

There is a second order differential operator G on R2 (called Grushin
operator) such that:

∆sub ◦ (π̃)∗ = (π̃)∗ ◦ G. (1)

With coordinates (u, v) of R2 it has the simple form:

G =
1

2

(
∂2

∂u2
+ u2

∂2

∂v2

)
= ”sum-of-squares.”
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A model operator

Remark

Note that the vector fields V = ∂
∂u and W = u ∂

∂v are linearly dependent
exactly on the line

S := {(u, v) = (0, v) : v ∈ R} ⊂ R2.

The Grushin operator

G =
1

2

(
V 2 +W 2

)
is the Laplace operator on R2 \ S (Grushin plane) with respect to a
Riemannian metric, which becomes singular at S.

Next plan:

We study the (subordinate to ∆sub on H3) Grushin operator G on R2 and
calculate its heat kernel via an explicit spectral decomposition.
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Spectral decomposition and Mehler formula:

First step: Perform a partial Fourier transform in the operator G.

Fy : L2(R2)→ L2(R2) :
[
Fy f

]
(x , η) =

1√
π

∫
R
f (x , y)e−iyηdy .

Using the rule ∂
∂yF

y = −iFyη we obtain the differential operator:

Lη :=
(
Fy
)−1 ◦ G ◦ Fy =

1

2

(
∂2

∂x2
− x2η2

)
, η ∈ R.

Note: Lη is closely related to the well-understood Hermite operator.

Idea

We interpret (Lη)η∈R as a parameter family of operators on R. Now,
perform a spectral decomposition of each operator Lη
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From spectral decomposition to the heat kernel
Let A be an operator on L2(R) and [φj : j ∈ N] ⊂ S(R) an orthonormal
basis consisting of eigenfunctions with eigenvalues

0 ≥ λ1 ≥ λ2 ≥ λ3 . . . ≥ λj . . . −→ −∞ ”fast” as j →∞.

Ansatz: Then the heat kernel of A should have the form:

K (t; g , h) =
∞∑
j=1

etλjφj(g)φj(h) (2)

(in case of convergence). In fact, let f ∈ S(R):( ∂

∂t
− A

)
K (t; ·, h)=

∞∑
j=1

etλj

(
λjφj − Aφj

)
︸ ︷︷ ︸

=0

φj(h) = 0.

lim
t↓0

∫
R2

f (h)K (t; g , h)dh = lim
t↓0

∞∑
j=1

etλj

∫
R2

f (h)φj(g)φj(h)dh

=
∑
⟨f , φj⟩L2φj(g) = f (g) = δg (f ).
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From spectral decomposition to the heat kernel

Observation: We known the spectral decomposition of A = Lη explicitly.

Lemma (spectral decomposition of Lη)

Let η ̸= 0 be fixed. Consider the n-th Hermite polynomial (n ∈ N0)

Hn(x) = (−1)nex2 d
ne−x2

dxn
and put Vn(x) := e−

1
2
|η|x2Hn

(√
|η|x

)
.

Then Vn is an eigenfunction of Lη with:

eigenvalue λn = −(n + 1
2)|η| of multiplicity one:

∥Vn∥2L2 =
√

π
|η|2

nn!,

and [ Vn
∥Vn∥L2

: n ∈ N0] forms an orthonormal basis of L2(R).
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Mehler formula

The previous observation provides the heat kernel of Lη for η ̸= 0:

Kη
(
t; x , x̃

)
=

∞∑
n=0

e−(n+ 1
2 )|η|t

√
|η|Vn(x)Vn(x̃)√

π2nn!

=
√
|η|e− 1

2 |η|te−
|η|
2 (x2+x̃2)

∞∑
n=0

Hn(
√
|η|x)Hn(

√
|η|x̃)√

π2nn!
e−nt|η|.

In order to calculate the infinite sum we use the Mehler formula:

Lemma (Mehler formula)

Let |w | < 1, then:

∞∑
n=0

Hn(x)Hn(x̃)

2nn!
wn =

√
1

1− w2
e−

(x+x̃)2

4
w−1
w+1

− (x−x̃)2

4
w+1
w−1 .
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Heat kernel of the Grushin operator

Lemma

The heat kernel of the operator Lη = 1
2

(
∂2

∂x2
− x2η2

)
with η ̸= 0 has the

form:

Kη

(
t; x , x̃

)
=

1√
π

√
η

etη − e−tη
e−

η
4

{
(x+x̃)2 tanh ηt

2
+(x−x̃)2 coth ηt

2

}
.

Note that: √
η

etη − e−tη
=

1√
2

√
η

sinh tη

is an even function in the variable η.

Remark: As η → 0 we recover the well-known heat kernel of the Laplace
operator L0 on R which has no eigenvalues:

lim
η→0

Kη(t; x , x̃) =
1√
2πt

e−
∥x−x̃∥2

2t , (x , x̃ ∈ R).
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Heat kernel of the Grushin operator

From the heat kernels of (Lη)η∈R we calculate the heat kernel of G:

Lemma

The heat kernel KG of the Grushin operator

G =
1

2

(
∂2

∂u2
+ u2

∂2

∂v2

)
= Fy ◦ Lη ◦

(
Fy
)−1

is obtained by applying the (inverse) Fourier transform to the family of
heat kernels of Lη:

KG(t; x , y , x̃ , ỹ) =
=

1

(2π)
3
2

∫
R
e i(y−ỹ)ηe−

η
4

{
(x+x̃)2 tanh tη

2 +(x−x̃)2 coth tη
2

}√
η

sinh tη
dη.

Proof: Check that KG has the properties of the heat kernel. Then, use
uniqueness of the heat kernel (which also needs a proof).
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How to generalize this?

The Grushin operator looked rather easy.

Ingredients to our proof

An explicit spectral decomposition of the operators Lη when η ̸= 0,

Mehler formula, which gives an expression of the generating function
for the Hermite functions.

Problem: We were very lucky! However, for more general operators such
tools may not be available.

Question: The heat kernel does not give a spectral decomposition.

Can we calculate the heat kernel of G without knowing the spectral
decomposition explicitly and which we may be able to generalize?

Can some geometry be helpful?

Idea: Compare the heat kernel KG with the form in the Meta Theorem.
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Heat kernel of Grushin operator: a second method
Rewrite the heat kernel of G by applying a time scaling, i.e. change tη to
η in the integral:

KG(t; x , y , x̃ , ỹ) =
=

1

(2πt)
3
2

∫
R
e i

(y−ỹ)η
t e−

η
4t

{
(x+x̃)2 tanh η

2
+(x−x̃)2 coth η

2

}√
η

sinh η
dη.

We rename the functions appearing in the integration as follows:

S(x , x̃ , η) :=
η

4

{
(x + x̃)2 tanh

η

2
+ (x − x̃)2 coth

η

2

}
,

V (η) :=

√
η

sinh η
= volume element.

Observation: The heat kernel KG can be written in the form:

KG(t; x , y , x̃ , ỹ) = 1

(2πt)
3
2

∫
R
e i

(y−ỹ)η
t

− S(x,x̃,η)
t V (η)dη.
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Heat kernel of Grushin operator: a second method

Observation: The heat kernel KG can be written in the form:

KG(t; x , y , x̃ , ỹ) = 1

(2πt)
3
2

∫
R
e i

(y−ỹ)η
t

− S(x,x̃,η)
t V (η)dη.

”Meta-Theorem”

The heat kernel has the form of a path integral:

K (t; x , y) =

∫
Pt(x,y)

e−St(γ)dµt(γ).

(i) Pt(x , y) = space of horizontal curves, connecting x and y .

(ii) St(γ) =
1
2

∫ 1
0 ∥γ̇(s)∥

2ds is a classical action

(iii) µt , a ”measure” on the infinite dimensional space Pt(x , y).
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Heat kernel of Grushin operator: a second method

Aim: Obtain S = S(x , x̃ , η) from the solution of a Hamilton system under
initial and end condition associated to the Grushin operator.

Let η ̸= 0 and consider the Hamiltonian Hη corresponding to the operator

Lη =
1

2

(
∂2

∂x2
− x2η2

)
.

Explicitly,

Hη(x , ξ) =
1

2

(
ξ2 − x2η2

)
.

Let x , x̃ ∈ R and t > 0. The induced Hamilton system is given by:

(HS) :


ẋ(s) = ∂Hη

∂ξ = ξ(s)

ξ̇(s) = −∂Hη

∂x = x(s)η2

x(0) = x and x(t) = x̃ (initial and end condition).
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Heat kernel of Grushin operator: a second method

This system can be uniquely solved with explicit formulas:

x(s) = x(s; t, x , x̃ , η) =
x̃ sinh(sη) + x sinh η(t − s)

sinh(tη)
}

ξ(s) = ξ(s; t, x , x̃ , η) = ẋ(s) = η
x̃ cosh(sη)− x cosh(t − s)η

sinh tη
.

From this solution we build the so-called classical action:

φ(x , x̃ , t; η) =

∫ t

0

(
ẋ(s))2 − Hη

(
x(s), ξ(s)

)︸ ︷︷ ︸
=Lη(t;x ,ẋ)

ds

= ”classical action”.

Recall from ODE:

The integrand Lη(t; x , ẋ) is called Lagrange function. It is obtained by a
Legendre transform of the Hamiltonian: Lη = (Hη)∗.
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Heat kernel of Grushin operator: a second method

Remark

The Hamiltonian Hη is constant along solutions to the Hamilton system.

Hη
(
x(s), ẋ(s)

)
≡ Hη

(
x(0), ξ(0)

)
(ẋ = ξ)

=
1

2

(
ξ2(0)− x2η2

)
:= E = ”energy”.

From the above expression of ξ:

ξ(0) = η
x̃ − x cosh(tη)

sinh tη
.

Inserting these data into the integrand of φ gives (after a calculation):

φ(x , x̃ , t; η) =

∫ t

0
ẋ(s)2 − tE︸ ︷︷ ︸
=Lη(t;x ,ẋ)

dt =
η

4

{
(x̃+x)2 tanh

tη

2
+(x+ x̃)2 coth

tη

2

}
.
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Heat kernel of Grushin operator: a second method

Conclusion: The classical action φ in fact appears in the heat kernel
expression of the Grushin operator G.

Lemma

The function S(x , x̃ ; η) appearing in the exponent of the heat kernel:

KG(t; x , y , x̃ , ỹ) = 1

(2πt)
3
2

∫
R
e i

(y−ỹ)η
t

− S(x,x̃,η)
t V (η)dη.

coincides with the classical action of the Hamiltonian system (HS) at the
time t = 1:

S(x , x̃ , η) = φ(x , x̃ , 1; η) = ”classical action” .

Hence: In order to find this part of the heat kernel we need not to ”pass
through” the spectrum of G.
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Heat kernel of Grushin operator: more equations
Know from PDE: the classical action φ solves the

”Hamilton-Jacobi equation”.

Roughly speaking: the ”PDE for the geodesic distance”, i.e.:

∂φ

∂t

(
x , x̃ , t; η

)
+ Hη

(
x̃ ,

∂

∂x̃
φ(x , x̃ , t; η)

)
= 0. (HJE)

Corollary (Generalized Hamilton Jacobi equation)

The function S(x , x̃ ; η) in the exponent of the integrant of KG solves the
so-called ”generalized Hamilton-Jacobi equation”:

Hη

(
x̃ ,

∂

∂x̃
S(x , x̃ ; η)

)
+ η

∂S

∂η
(x , x̃ ; η) = S(x , x̃ ; η).

Proof: (HJE) and S(x , x̃ ; tη) = φ(x , x̃ , 1; tη) = tφ(x , x̃ , t; η).
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Heat kernel of Grushin operator: more equations
Take a second look at the heat kernel of the Grushin operator:

KG(t; x , y , x̃ , ỹ) = 1

(2πt)
3
2

∫
R
e i

(y−ỹ)η
t − S(x,x̃,η)

t V (η)dη.

Question: How to interpret the function V (η) (the ”volume element”)?

Correspondence

Fix the following values:

t = time, x = initial condition and η ̸= 0.

and consider the correspondence V between final condition x̃ and the value
of the dual variable ξ at time s = 0:

V(·; t, x , η) : x̃ 7→ ξ(0; t, x , x̃ , η).

Since we have an explicit formula for ξ we obtain V explicitly, namely:

V(x̃ ; t, x , η) = η

sinh(tη)
(x̃ − x cosh(tη)) .
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Heat kernel of Grushin operator: more equations

We make the following observation:

Lemma

Let V (η) be the volume element in the heat kernel expression.

(a) The function V and V are related by the equation:√
∂V
∂x̃ (x̃ ; t, x , η) =

√
η

sinh η = V (η).

(b) The volume element solves the transport equation:

η
∂V

∂η
−
(
− GS(0, x̃ ; η) + 1

2

)
V = 0.

Question: Can these observations for the low dimensional model of the
Grushin operator be generalized to obtain the heat kernel of the
sub-Laplacian ∆sub on nilpotent Lie groups (without spectral
decompositions)?
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Sub-Laplacian on step-2 nilpotent Lie groups
Let (G , ∗) be a step-2 nilpotent Lie group with Lie algebra:

g = V1 ⊕ V2,

such that

[V1,V1] = V2 and [V1,V2] = [V2,V2] = 0.

Consider an inner product ⟨·, ·⟩ on V1 and choose

[X1, · · · ,Xm]︸ ︷︷ ︸
left-invariant vector fields on G

= ”orthonormal basis of V1”.

Choose now a basis [Ym+1, · · · ,Yn] of V2 and write:

[Xi ,Xj ] =
n∑

ℓ=m+1

cℓijYℓ, and [Xi ,Yℓ] = 0 = [Yℓ,Yh].

Definition

We call the skew-symmetric matrices (cij)
ℓ
ij ∈ Rm×m for ℓ = m + 1, . . . , n

the structure constants.
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Sub-Laplacian on step-2 nilpotent Lie groups
Identity Xi with the left-invariant vector fields on Rn ∼= G :

X̃i :=
∂

∂xi
− 1

2

m∑
j=1

n∑
ℓ=m+1

xjc
ℓ
ij

∂

∂yℓ
.

Consider the left-invariant sub-Laplacian:

∆sub =
1

2

m∑
i=1

X̃ 2
i =

1

2

m∑
i=1

[ ∂

∂xi
− 1

2

m∑
j=1

n∑
ℓ=m+1

xjc
ℓ
ij

∂

∂yℓ

]2
.

Lemma

The heat kernel Ksub ∈ C∞(R+ × G × G ) is a ”convolution kernel”, i.e.

Ksub(t; g , h) = k
(
t, g−1 ∗ h

)
where k(t, g) ∈ C∞(R× G ),

such that

(a)
(

∂
∂t −∆sub

)
k(t, g) = 0.

(b) limt↓0 k(t, ·) = δe = delta-distribution at e ∈ G , where e is the unit.
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Sub-Laplacian on step-2 nilpotent Lie groups

Question: How can we find k(t, g)?

According to the form of the heat kernel KG for the Grushin operator (or
based on the Meta theorem) we try the following Ansatz:

k(t, g) =
1

tρ

∫
Rd

e
f (g,η)

t V (g , η)dη. (3)

Here we have the following ingredients (which need to be determined):

ρ ≥ 0,

d = n −m = dimV2 = dimension of the center of g

f = f (g , η) ∈ C∞(G × Rd) = ”complex action function”.

V = V (g , η) ∈ C∞(G × Rd) = ”volume element”.

Idea: Find conditions on ρ, f and V such that properties of the last
Lemma hold.
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Complex Hamilton-Jacobi Theory
The corresponding analysis is called

”Complex Hamilton Jacobi theory”.

Repeating what we did for the Gruhsin operator G, it goes like this:

Method to determine f and V :

(a) Construct the complex action function f (g , η) by uniquely solving a
Hamiltonian system under

”initial-final conditions.”

(b) Construct the volume element V (η) from the Jacobian of the
correspondence between the final and initial condition of the
Hamiltonian system (van Vleck determinant).

Let z = (z1, . . . , zℓ)
t ∈ Rn−m and define the matrix-valued function:

Ω(z) =
d∑

k=1

zk
(
cki j
)
i ,j
∈ Rm×m.
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Heat kernel: the formula

Theorem (Beals-Gaveau-Greiner formula)

The integral kernel Ksub (= heat kernel) of the heat operator

∂

∂t
−∆sub on R+ × G

has the form:

Ksub(t, g , h) = k(t, g−1 ∗ h) =
1

(2πt)m/2+d

∫
Rd

e−
f ( g−1 ∗ h,η)

t V (η) dη,

Put g = (x , z) ∈ Rm × Rd , then:

f (g , η) = f (x , z , η) = i⟨η, z⟩+ 1

2

〈
Ω(iη) coth

(
Ω(iη)

)
· x , x

〉
,

V (η) =

{
det

Ω(iη)

sinhΩ(iη)

}1/2

.
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Heat kernel: related PDE
Let H(x , ξ) denote the Hamiltonian of ∆sub:

Remark

Generalizing our observation in the case of the Grushin operator the
functions f and V solve certain PDE:

The action function f solves the generalized Hamilton-Jacobi
equation.

H(x ,∇g f ) +
d∑

i=1

ηℓ
∂

∂ηℓ
f (g , η) = f (g , η). (GHJE)

With a solution f (g , η) to Equation (GHJE) the volume element
V (g , η) solves the transport equation:

ℓ∑
i=1

ηi
∂V

∂ηi
−
(
∆sub(f ) +

m

2

)
V = 0.
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Heat kernel: sub-Laplacian on the Heisenberg group
Example: We specialize the last theorem to the heat kernel of the
sub-Laplacian on the Heisenberg group H3.

Bracket relation: (Heisenberg Lie algebra h3): Here m = 2 and d = 1:[
X ,Y

]
= Z , where h3 = span

{
X ,Y ,Z

}
.

We obtain the matrix of structure constants

Ω(z) = z

(
0 1
−1 0

)
=

(
0 z
−z 0

)
, where z ∈ R.

Observation: the matrices Ω(iη) are selfadjoint:

Ω(iη) = Ω(iη)∗ for all η ∈ R

and can be diagonalized with eigenvalues

λ± = ±η.
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Heat kernel: sub-Laplacian on the Heisenberg group
Here are all functions that appear in the representation of the heat kernel:

Ingredients to the heat kernel

volume element: V (η) is given by:

V (η)2 = det

(
η

sinh η 0

0 −η
sinh(−η)

)
=

η2

sinh2(η)
.

action function: f = f (x , y , z ; η) is given by:

f (x , y , z ; η) = iηz +
η

2
coth(η)

(
x2 + y2

)
.

convolution: Let g = (x , y , z), h = (x̃ , ỹ , z̃) ∈ H3. Then,

g−1 ∗ h = −g ∗ h =
(
− x + x̃ ,−y + ỹ ,−z + z̃ +

1

2

(
− xỹ + x̃y

))
.
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Heat kernel: sub-Laplacian on the Heisenberg group

Theorem

The heat kernel of the sub-Laplace operator ∆sub on H3 has the explicit
form:

Ksub
(
t; g , h

)
= k(t, g−1 ∗ h)

=
1

(2πt)2

∫
R
e iη
(
z−z̃+ xỹ−x̃y

2

)
+ η

2t
coth η

{(
x−x̃)2+(y−ỹ)2

}
· η

sinh η
dη.
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From sub-Laplacian to Grushin

Grushin operator: revisited:

Recall: the Grushin operator G on R2:

G =
1

2

(
∂2

∂u2
+ u2

∂2

∂v2

)
is related to the sub-Laplacian ∆sub on H3 via:

∆sub ◦ (π̃)∗ = (π̃)∗ ◦ G,

where π is the canonical projection:

π : H3 → NY \H3
∼= R2 and NY :=

{
(0, t, 0) ∈ H3 : t ∈ R

} subgroup
⊂ H3.

Aim: From the above explicit expression of the heat kernel of ∆sub we can
re-obtain the heat kernel of G via a ”fiber integration”.
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From sub-Laplacian to Grushin
Here is the way it works:

Consider again the global trivialization of π : H3 → NY \H3
∼= R2:

φ : NY ×
(
NY \H3

) ∼= R× R2 ∋
(
a, u, v

)
7→
(
u, a, v − au

2

)
∈ R3 ∼= H3.

In particular, φ is a diffeomorphism with

π ◦ φ
(
a,NY g

)
= NY g .

Lemma

The heat kernels KG of G and Ksub of ∆sub are related via:

KG(t;π(x)︸︷︷︸
∈R2

, y
)
=

∫
R
Ksub

(
t; x , φ(a

↑
, y)
)

”fiber variable”

da.

Here x ∈ H3 and y ∈ R2. Note that π : H3 → R2 is surjective.
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A Question

Question: Can we generalize the Beals-Gaveau-Greiner Theorem and as
well calculate the heat kernel of the sub-Laplacian on

”Carnot groups of step r > 2”?

Maybe no: As we have discussed in the last lecture in relation with the
Engel group.
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Heat kernel: sub-Laplacian on the Heisenberg group

Theorem

The heat kernel of the sub-Laplace operator ∆sub on H3 has the explicit
form:

Ksub
(
t; g , h

)
= k(t, g−1 ∗ h)

=
1

(2πt)2

∫
R
e iη
(
z−z̃+ xỹ−x̃y

2

)
+ η

2t
coth η

{(
x−x̃)2+(y−ỹ)2

}
· η

sinh η
dη.

Question: Can we generalize the formula and calculate the heat kernel of
the sub-Laplacian on

”Carnot groups of step r > 2”?

What it is good for?
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Subriemannian geodesics on the Heisenberg group H3

Figure: SR geodesic on H3 and isoperimetric problem in the plane.
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Heat kernel/trace expansion
Even if we do not an explicit formula we may apply asymptotic results:
Here are examples:

Theorem (Ben Arous, Leandré)

Let (M,H, ⟨·, ·⟩) be a SR manifold and q ∈ M. Let N ∈ N:

K (t, q, q) =
1

t
Q(q)
2

(
c0(q) + c1(q)t + · · · cN(q)tN + O(tN+1)

)
as t ↓ 0. Here:

Q(q) = Hausdorff dimension with respect to the dcc -metric.

Definition: We call the coefficients heat invariants.

Problem: What is the ”geometric content” of the heat invariants in this
subelliptic setting, or · · ·

”Can one hear the subriemannian structure?”
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More asymptotic relations

Theorem (Leandré)

Let x , y ∈ (M,H, ⟨·, ·⟩), then

lim
t↓0

t logK (t, x , y) = −dcc(x , y)
2

2
.

The heat kernel contains information on the dcc -metric.

Theorem

Let M be compact and equiregular. Then we have a heat trace expansion:

trace
(
et∆sub

)
∼ 1

t
Q
2

(
α0 + α1t + α2t

2 · · ·
)

t ↓ 0.

W. Bauer (Leibniz Universität Hannover ) SR Geometry and Hypoelliptic Operators Sept. 19-23, 2022 42 / 60



A Theorem, a Question and a first Answer:
G =nilpotent Lie group (e.g. nilpotentization) with lattice Γ ⊂ G .

M = Γ\G = compact nilmanifold.

Theorem (W. Bauer, K. Furutani, C. Iwasaki 2012)

Assume that G a is of step 2 and let ∆Γ
sub be the intrinsic sub-Laplace

operator on M. Then:

trace
(
et∆

Γ
sub

)
=

C

t
m
2
+d

+ O(t∞) as t → 0.

Here C is explicitly known and encodes the Popp volume of M.

dimM = m + d , d = dim center g ←− Lie algebra of G

m

2
+ d =

1

2
× {Hausdorff dimension of (M, dcc)}.

ae.g. G can be the Heisenberg group
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Question:
Under the conditions of the last theorem:

Questions

(a) Which geometric data can we recover from the spectrum of the
sub-Laplace operator (inverse spectral problem), e.g.:

Can we read from the spectrum of ∆Γ
sub the

manifold dimension dimM = m + d?

(b) Does the theorem hold for nilpotent Lie groups of step ≥ 3?

Answer to (a): In some specific cases Yes, (K. Furutani, 2020). But
unknown in general.

Answer to (b): Yes!

The short-time asymptotic expansion of the heat kernel on any nilmanifold
contains only a single non-trivial term. This is true in an even more
general setting (V. Fischer, 2022). 2

2V. Fischer, Asymptotic and zeta function on compact nilmanifolds, J. Math. Pures
Appl. 160, 1-28, 2022.
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Conclusion:

Some intuition: The last result - roughly speaking - indicates:

Carnot groups (nilpotent Lie groups), which are the local models of a SR
manifold are ”flat” spaces in SR geometry.

However: they are not flat as Riemannian manifolds.

Next Aim

Consider certain ”curved SR manifolds”. Study the short time heat kernel
asymptotic via the local models (step 2 Carnot groups).

Questions:

What means curvature in this framework?

Can we express the second heat invariant via curvature terms?
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H-type foliation and second heat invariant

Aim: We consider the intrinsic sub-Laplace operator on Clifford bundles in
SR geometry. The local models are H-type groups.

Short review on H-type foliations:

Let (M, g) be a Riemannian manifold with metric g and of dimension
dimM = n +m. Assume that M is equipped with a

”Riemannian foliation”

locally being a Riemannian submersion (with bundle-like metric).

Example: Riemannian foliation may be induced by a Riemannian
submersion (e.g. a principal bundle).

Define (locally)

V = vertical bundle: formed by vectors tangent to the leaves,

H = horizontal bundle: orthogonal to V.
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Example: Quaternionic Hopf fibration

S7

HP2

π

π: S7 S7/SU(2)=HP2 (projection)

x· SU(2)=orbit 

x

V=kern(dπ
x
)= vertical space

H
x
=kern(dπ

x
)┴= horizontal space

Quaternionic Hopf fibration: SU(2) S7 HP2
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H-type foliation and second heat invariant
Induced splitting of tangent spaces and metric: For all q ∈ M:

TqM = Hq ⊕ Vq and g = gH
↑

restriction of g to H

⊕ gV .

Assumptions:

bundle-like complete metric: for all X ∈ Γ(H),Z ∈ Γ(V):

(LXg)(Z ,Z ) = 0.

Geodesics tangent to H at some point remain tangent to H.
totally geodesic: for all X ∈ Γ(H),Z ∈ Γ(V):

(LZg)(X ,X ) = 0.

All leaves are totally geodesic submanifolds.
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H-type foliation and second heat invariant
Known: Under these assumptions there is a canonical connection ∇ on M
preserving metric and foliation structure called

”Bott connection.”

Theorem and Definition

The Bott connection on a totally-geodesic foliation with bundle-like metric
is uniquely characterized by the following properties:

(metric): ∇g = 0,

(compatible): For X ∈ Γ(TM): ∇XH ⊂ H and ∇XV ⊂ V,
(torsion): The torsion

T (X ,Y ) := ∇XY −∇YX − [X ,Y ]

satisfies:

T (H,H) ⊂ V and T (H,V) = T (V,V) = 0.
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H-type foliation and second heat invariant

Definition (J-map)

For every Z ∈ Γ(V) define a bundle endomorphism JZ : H → H by

g
(
JZX ,Y

)
= g

(
Z ,T (X ,Y )

)
.

The next result implies that (M,H, gH) under a suitable condition defines
a SR manifold:

Lemma

Suppose that the H-type condition:

J2Z = −g(Z ,Z )IdH for all Z ∈ Γ(V)

is satisfied. Then TqM at any q ∈ M is generated by [X ,H]q and Hq for
every horizontal vector field X ∈ Γ(H) with Xq ̸= 0.

Remark: We call H strongly bracket generating or fat.
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H-type foliation and second heat invariant

Definition (H-type foliation)

The SR manifold (M,H, gH) is called an H-type foliation if the H-type
condition is satisfied.

Remark:

This class contains many classical examples.

Recently such foliations were studied (also under additional
assumptions) in:

F. Baudoin, E. Grong, L. Rizzi, G. Vega-Molino,
H-type foliations, arXiv 2021.
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Some examples of (compact) H-type foliations

W. Bauer (Leibniz Universität Hannover ) SR Geometry and Hypoelliptic Operators Sept. 19-23, 2022 52 / 60



H-type foliation and second heat invariant

Consider now a local horizontal frame X1, . . . ,Xn of H, i.e. Xj are
pointwise orthonormal horizontal vector fields such that

Hq = span
{
X1, . . . ,Xn

}
q

for all q ∈ M.

Correspondingly, consider the metric dual frame {θ1, . . . , θn}.

curvature

The Bott connection induces a curvature tensor in the usual way:

R(X ,Y )Z := ∇X∇YZ −∇Y∇XZ −∇[X ,Y ]Z .
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H-type foliation and second heat invariant

Definition (horizontal scalar curvature)

We define the following ”horizontal objects”:

Rδ
αβγ := θδ

(
R
(
Xα,Xβ)Xγ

)
with α, β, γ, δ = 1, . . . , n.

The horizontal scalar curvature of the Bott connection is given by:

κH :=
n∑

α,β=1

Rα
αββ .

Note: the value of κH is independent of the choice of the orthonormal
horizontal frame and of its vertical complement.
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H-type foliation and second heat invariant

We define a second local invariant which is a ”vertical object”.

Definition

For vertical vector fields Z ,W ∈ Γ(V) consider the bundle-like operator

M(Z ,W ) : Γ(H) −→ Γ(H)

defined by
M(Z ,W )X := JW JZ

(
∇ZJ)WX .

With a given orthonormal frame {Z1, . . . ,Zm} of the vertical distribution
V we define the function:

τV :=
m∑

i ,j=1

matrix trace
↓

trace
(
M
(
Zi ,Zj

))
.

Note: τV is independent of the choice of the vertical frame.
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Example

Under some additional assumptions on the H-type foliation we can
interpret the vertical quantity τV more geometrically:

Theorem

Let m ≥ 2. Assume that

the torsion T is horizontally parallel, i.e.

∇XT = 0, X ∈ Γ(H).

the sectional curvature κV of the leaves is a positive constant.

Then we have:
τV = m(m − 1)σ

√
κV ,

with σ ∈ Z being the difference between positive and negative eigenvalues
of the symmetric part of M(Z ,W ), where Z ,W are any linear
independent vertical vector fields.
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H-type foliation and second heat invariant

Now we can formulate our main result:

Theorem (W.-B., I. Markina, A. Laaroussi, G. Vega-Molino, 2022)

Let (M,H, gH) be an H-type foliation with intrinsic sub-Laplace operator

∆sub = divωPopp
◦ gradH.

Moreover, assume that the torsion induced by the Bott connection is
horizontally parallel, i.e. ∇HT = 0.

With q ∈ M the heat kernel Ksub of ∆sub has a short time asymptotic
expansion of the form

Ksub(t; q, q) =
1

t
n
2
+m

(
c0(q) + c1(q)t + O(t3)

)
as t ↓ 0.
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H-type foliation and second heat invariant

Theorem (continued)

The second heat invariant c1(q) is a linear combination of the local
invariants κH and τV above:

c1(q) = C1 · κH(q) + C2 · τV(q), q ∈ M,

where C1 and C2 are universal constants only depending on
n = rankH and m = rank V.
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Thank you for your attention!

Distribution and horizontal curve

A

B

Front of SR geodesics at time T
(picture by: U. Boscain, D. Barilari)

The falling cat: 

A connectivity 
problem
in SR geometry  
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