Global lifting and fundamental solution of degenerate operators

5. lecture
"Singular Integrals on nilpotent Lie groups and related topics" Summer school, Universität Göttingen

Wolfram Bauer
Leibniz Universität Hannover

Sept. 19-23, 2022

Outline

1. Fundamental solutions and homogeneous vector fields
2. A global lifting theorem by Folland
3. Fundamental solutions via liftings

Fundamental solution

Consider a linear PDO ${ }^{1} P$ on \mathbb{R}^{n} of order d, i.e.

$$
P=\sum_{|\alpha| \leq d} a_{\alpha}(x) D_{x}^{\alpha} \quad \text { where } \quad a_{\alpha}(x) \in C^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}\right)
$$

where we use the standard notation

$$
D_{x}^{\alpha}=\frac{\partial^{|\alpha|}}{\partial x_{1}^{\alpha_{1}} \cdots \partial x_{n}^{\alpha_{n}}} \quad \text { for } \quad \alpha \in \mathbb{N}_{0}^{n}
$$

Definition

Call $\Gamma:\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}: x \neq y\right\} \rightarrow \mathbb{R}$ a global fundamental solution if

- For every $x \in \mathbb{R}^{n}$ we have $\Gamma(x, \cdot) \in L_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$.
- For every $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$

$$
\int_{\mathbb{R}^{n}} \Gamma(x, y) P^{*} \varphi(y) d y=-\varphi(x)
$$

[^0]
Fundamental solution

Remarks

- The defining equation of the fundamental solution is shortly written:

$$
P \Gamma_{x}=-\delta_{x}=\text { Dirac distribution supported at } x .
$$

- Existence of the fundamental solution is not always guaranteed. Showing existence (or non-existence) can be complicated.
- In general, fundamental solutions are not unique, e.g. one may add a P-harmonic function h i.e.

$$
P h=0
$$

to a fundamental solution and gets another one.

From the heat kernel to the inverse
Let $\mathcal{L}=\mathcal{L}^{*}$ be a partial differential operator on \mathbb{R}_{x}^{n} (smooth coefficients).

Definition

The corresponding heat operator on $\mathbb{R}_{x}^{n} \times \mathbb{R}_{t}$ is defined by $\mathcal{H}=\mathcal{L}-\partial_{t}$.

Assumption:

\mathcal{H} admits a heat kernel $\left\{p_{t}(x, y)\right\}_{t>0}$ which is integrable with respect to t. In particular:

$$
\mathcal{L}_{y} p_{t}(x, y)=\partial_{t} p_{t}(x, y)
$$

Observation: At least formally, a fundamental solution of \mathcal{L} is given by

$$
\Gamma(x, y)=\int_{0}^{\infty} p_{t}(x, y) d t
$$

(This can be made precise in many cases).

From the heat kernel to the inverse

In fact (formal calculation): Let $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$, then

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} \Gamma(x, y) \mathcal{L}^{*} \varphi(y) d y & =\int_{\mathbb{R}^{n}} \int_{0}^{\infty} p_{t}(x, y) d t \mathcal{L}^{*} \varphi(y) d y \\
& =\int_{\mathbb{R}^{n}} \int_{0}^{\infty} \mathcal{L}_{y} p_{t}(x, y) d t \varphi(y) d y \\
& =\int_{\mathbb{R}^{n}} \int_{0}^{\infty} \partial_{t} p_{t}(x, y) d t \varphi(y) d y \\
& =\int_{\mathbb{R}^{n}}\left[p_{t}(x, y)\right]_{0}^{\infty} \varphi(y) d y \\
& =-\lim _{t \rightarrow 0} \int_{\mathbb{R}^{n}} p_{t}(x, y) \varphi(y) d y=-\varphi(x) .
\end{aligned}
$$

Here we have assumed that $\lim _{t \rightarrow \infty} p_{t}(x, y)=0$.

Reducing the dimension

Here is another example:
Consider the Laplace operator Δ_{n} on \mathbb{R}^{n} with $n>2$ and let $p \geq 1$.

$$
\Delta_{n}=\sum_{j=1}^{n} \frac{\partial^{2}}{\partial x_{j}^{2}} \quad \text { and } \quad \Delta_{n+p}=\Delta_{n}+\sum_{j=n+1}^{n+p} \frac{\partial^{2}}{\partial x_{j}^{2}}
$$

Then Δ_{n} has the fundamental solution

$$
p_{n}(x, y):=c_{n}\|x-y\|^{2-n} .
$$

Observation

We can consider Δ_{n+p} for $p \geq 1$ as a

$$
\text { "lifting of } \Delta_{n} " \text {, }
$$

i.e. it acts on functions only depending on the variable x_{1}, \cdots, x_{n} as Δ_{n}.

Reducing dimension

Lemma

We obtain the fundamental solution of Δ_{n} from the fundamental solution of Δ_{n+p} via a "fiber integration".

$$
\begin{aligned}
& c\left(\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}\right)^{2-n}= \\
& \quad=\int_{\mathbb{R}^{p}}\left(\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}+t_{1}^{2}+\cdots+t_{p}^{2}}\right)^{2-n-p} d t_{1} \cdots d t_{p}=(*)
\end{aligned}
$$

Proof: The change of variables $t=\|x\| \tau$ with $\tau \in \mathbb{R}^{p}$ and $x \neq 0$ gives:

$$
\begin{aligned}
(*) & =\|x\|^{p} \int_{\mathbb{R}^{p}}\left(\|x\|^{2}+\|\tau\|^{2}\|x\|^{2}\right)^{\frac{2-n-p}{2}} d \tau \\
& =\|x\|^{2-n} \underbrace{\int_{\mathbb{R}^{p}}\left(1+\|\tau\|^{2}\right)^{\frac{2-n-p}{2}} d \tau}_{=: c}
\end{aligned}
$$

Lifting

We describe recent work by S. Biagi and A. Bonfiglioli: ${ }^{2}$
Let P be a PDO with smooth coefficients.

Definition

We call a PDO $P_{\text {lift }}$ on $\mathbb{R}^{n} \times \mathbb{R}^{p}$ a lifting of P if
(a) $P_{\text {lift }}$ has smooth coefficients depending on $(x, \xi) \in \mathbb{R}^{n} \times \mathbb{R}^{p}$.
(b) For every $f \in C^{\infty}(\mathbb{R})$:

$$
P_{\text {lift }}(f \circ \pi)(x, \xi)=(P f)(x) \quad \text { where } \quad(x, \xi) \in \mathbb{R}^{n} \times \mathbb{R}^{p}
$$

Here $\pi: \mathbb{R}^{n} \times \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$ is the projection to the x-coordinates:

$$
\pi(x, y)=x
$$

[^1]
Example and equivalent formulation

Observation: $P_{\text {lift }}$ is a lifting of P if and only if

$$
P_{\mathrm{lift}}=P+R \quad \text { where } \quad R=\sum_{\beta \neq 0} r_{\alpha, \beta}(x, \xi) D_{x}^{\alpha} D_{\xi}^{\beta}
$$

Example

Consider the Grushin operator on \mathbb{R}^{2} :

$$
\mathcal{G}:=\left(\partial_{x_{1}}\right)^{2}+\left(x_{1} \partial_{x_{2}}\right)^{2} .
$$

A lifting of \mathcal{G} to \mathbb{R}^{3} is given by:

$$
\widetilde{\mathcal{G}}=\left(\partial_{x_{1}}\right)^{2}+\left(\partial_{\xi}+x_{1} \partial_{x_{2}}\right)^{2}=\mathcal{G}+\underbrace{\partial_{\xi}^{2}+2 x_{1} \partial_{x_{2}} \partial_{\xi}}_{R} .
$$

Remark: $\widetilde{\mathcal{G}}$ is up to a change of variables the sub-Laplacian of the Heisenberg group. Its heat kernel is known do to the group structure.

Assumption

Let $P_{\text {lift }}$ be a lifting of P and $P_{\text {lift }}$ admits a global fundamental solution Γ.

One may ask:

- Does P admit a fundamental solution $\widetilde{\Gamma}$?
- If yes, can we obtain $\widetilde{\Gamma}$ by "via integration over some variables" in Г?
- If we do not know Г explicitly, but if we have estimates on Г. Can we use them to obtain estimates on $\widetilde{\Gamma}$?
- Why should we lift at all? Adding more variables should make life more complicated.

Homogeneous group and dilations
Let $G=\left(\mathbb{R}^{n}, *\right)$ be a nilpotent Lie group.
Definition (homogeneous group)
We call G a homogeneous group, it there is $\sigma=\left(\sigma_{1}, \cdots, \sigma_{n}\right) \in \mathbb{R}^{n}$ with

$$
1 \leq \sigma_{1} \leq \sigma_{2} \leq \cdots \leq \sigma_{n}
$$

such that the dilation $\delta_{\lambda}: G \rightarrow G$ with

$$
\delta_{\lambda}\left(x_{1}, \cdots, x_{n}\right)=\left(\lambda^{\sigma_{1}} x_{1}, \cdots, \lambda^{\sigma_{n}} x_{n}\right)
$$

is an automorphism of G for every $\lambda>0$, i.e.

$$
\delta_{\lambda}(g) * \delta_{\lambda}(h)=\delta_{\lambda}(g * h)
$$

Remark:

The dilations $\left\{\delta_{\lambda}\right\}_{\lambda}$ form a one-parameter group of automorphisms.

The homogeneous structure of the Heisenberg group

Example: Consider again the Heisenberg group $\mathbb{H}_{3} \cong \mathbb{R}^{3}$ with dilation:

$$
\delta_{\lambda}\left(x_{1}, x_{2}, x_{3}\right):=\left(\lambda x_{1}, \lambda x_{2}, \lambda^{2} x_{3}\right) \quad \text { with } \quad(\lambda>0) .
$$

Then we have

$$
\begin{aligned}
& \delta_{\lambda}\left(x_{1}, x_{2}, x_{3}\right) * \delta_{\lambda}\left(y_{1}, y_{2}, y_{3}\right) \\
& \quad=\left(\lambda x_{1}, \lambda x_{2}, \lambda^{2} x_{3}\right) *\left(\lambda y_{1}, \lambda y_{2}, \lambda^{2} y_{3}\right) \\
& \quad=(\lambda\left(x_{1}+y_{1}\right), \lambda\left(x_{2}+y_{2}\right), \underbrace{\lambda^{2}\left(x_{3}+y_{3}\right)+\frac{1}{2}\left[\lambda x_{1} \lambda y_{2}-\lambda y_{1} \lambda x_{2}\right]}_{=\lambda^{2}\left(\left(x_{3}+y_{3}\right)+\frac{1}{2}\left[x_{1} y_{2}-y_{1} x_{2}\right]\right)}) \\
& \quad=\delta_{\lambda}\left(\left(x_{1}, x_{2}, x_{3}\right) *\left(y_{1}, y_{2}, y_{3}\right)\right) .
\end{aligned}
$$

Therefore \mathbb{H}_{3} is a homogeneous Lie group with $\sigma=(1,1,2)$.

Homogeneous vector fields

Having dilations $\left\{\delta_{\lambda}\right\}_{\lambda}$ we can define δ_{λ}-homogeneous vector fields:

Definition

Let X_{1}, \cdots, X_{m} be C^{∞}-vector fields in $G=\left(\mathbb{R}^{n}, *\right)$. Then we call X_{j} homogeneous of degree 1 if:

$$
X_{i}\left(f \circ \delta_{\lambda}\right)=\lambda\left(X_{i} f\right) \circ \delta_{\lambda} \quad \forall \lambda>0, \forall f \in C^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}\right)
$$

Further assumptions: Assume that X_{1}, \cdots, X_{m}

- are linearly independent as linear differential operators,
- fulfill the Hörmander bracket generating condition, i.e for all $g \in G$:

$$
\operatorname{dim}\left\{X(g): X \in \operatorname{Lie}\left\{X_{1}, \cdots, X_{m}\right\}\right\}=n
$$

Note: If X and Y are δ_{λ}-homogeneous of degree d_{1} and d_{2}, respectively. Then $[X, Y]$ is δ_{λ}-homogeneous of degree $d_{1}+d_{2}$.

Example:
Consider again the Grushin operator \mathcal{G} on \mathbb{R}^{2} defined by

$$
\mathcal{G}=\left(\partial_{x_{1}}\right)^{2}+\left(x_{1} \partial_{x_{2}}\right)^{2}=X_{1}^{2}+X_{2}^{2},
$$

On \mathbb{R}^{2} define the dilation $\delta_{\lambda}\left(x_{1}, x_{2}\right):=\left(\lambda x_{1}, \lambda^{2} x_{2}\right)$.

Observation

- The bracket generating condition is fulfilled with $m=2$, since

$$
\operatorname{dim}\left\{X_{1}=\partial_{x_{1}}, X_{2}=x_{1} \partial_{x_{2}},\left[X_{1}, X_{2}\right]=\partial_{x_{2}}\right\}=3
$$

- X_{1} and X_{2} are homogeneous of degree 1: Let $g=\left(x_{1}, x_{2}\right)$, then

$$
\begin{aligned}
& X_{1}\left(f \circ \delta_{\lambda}\right)(g)=\partial_{x_{1}}\left[f\left(\lambda x_{1}, \lambda^{2} x_{2}\right)\right]=\lambda\left(\partial_{x_{1}} f\right)\left(\lambda x_{1}, \lambda^{2} x_{2}\right)=\lambda\left(X_{1} f\right) \circ \delta_{\lambda}(g), \\
& X_{2}\left(f \circ \delta_{\lambda}\right)(g)=x_{1} \partial_{x_{2}}\left[f\left(\lambda x_{1}, \lambda^{2} x_{2}\right)\right]=\lambda\left(\lambda x_{1}\right)\left[\partial_{x_{2}} f\right] \circ \delta_{\lambda}(g)=\lambda\left(X_{2} f\right) \circ \delta_{\lambda}(g)
\end{aligned}
$$

From homogeneous vector fields to a nilpotent Lie algebra Let $\mathcal{X}=\left\{X_{1}, \cdots, X_{m}\right\}$ be homogeneous vector fields on \mathbb{R}^{n} with the previous assumptions. We consider the Lie algebra generated by \mathcal{X} :

$$
\mathfrak{a}:=\operatorname{Lie}\left\{X_{1}, \cdots, X_{m}\right\}
$$

$=$ smallest Lie subalgebra of vector fields on \mathbb{R}^{n} containing \mathcal{X}.
The δ_{λ}-homogeneity of the vector fields implies the following:

Lemma

The Lie algebra \mathfrak{a} is finite dimensional and it corresponds to a Carnot group

$$
\mathfrak{a}=\mathfrak{a}_{1} \oplus \mathfrak{a}_{2} \oplus \cdots \oplus \mathfrak{a}_{r} \quad \text { and } \quad\left\{\begin{array}{l}
{\left[\mathfrak{a}_{1}, \mathfrak{a}_{i-1}\right]=\mathfrak{a}_{i}, \quad 2 \leq i \leq r,} \\
{\left[\mathfrak{a}_{1}, \mathfrak{a}_{r}\right]=\{0\} .}
\end{array}\right.
$$

Here, the "first level" is $\mathfrak{a}_{1}=\operatorname{span}\left\{X_{1}, \cdots, X_{m}\right\}$.

From the nilpotent Lie algebra to a Carnot group

Reminder:

We can equip \mathfrak{a} with a group structure via exponential coordinates: Via the Campbell-Baker-Hausdorff formula the product is:
$X \diamond Y=X+Y+\frac{1}{2}[X, Y]+\frac{1}{12}[X,[X, Y]]-\frac{1}{12}[Y,[X, Y]]+\cdots$ (finite).
Summing up:

Lemma

Let $N:=\operatorname{dim} \mathfrak{a}$. Then $G=\left(\mathfrak{a} \cong \mathbb{R}^{N}, \diamond\right)$ is a Carnot group with Lie algebra (isomorphic to) a. Moreover,

$$
\mathfrak{a}=\operatorname{Lie}\left\{X_{1}, \cdots, X_{m}\right\}
$$

is a Lie algebra of smooth vector fields on \mathbb{R}^{n} (we can "exponentiate").

A family of dilations on $\mathfrak{a} \cong G$

Recall that \mathfrak{a} has a decomposition:

$$
\mathfrak{a}=\mathfrak{a}_{1} \oplus \mathfrak{a}_{2} \oplus \cdots \oplus \mathfrak{a}_{r} \quad \text { with } \quad\left[\mathfrak{a}_{1}, \mathfrak{a}_{i-1}\right]=\mathfrak{a}_{i}
$$

Definition

For each $\lambda>0$ define a dilation $\left\{\delta_{\lambda}^{\mathfrak{a}}\right\}_{\lambda}$ on $\mathfrak{a} \cong \mathbb{R}^{N}$ via the decomposition of elements:

$$
\delta_{\lambda}^{\mathfrak{a}}(X)=\sum_{k=1}^{r} \lambda^{k} a_{k} \quad \text { where } \quad X=\sum_{k=1}^{r} a_{k} \quad \text { and } \quad a_{k} \in \mathfrak{a}_{k} .
$$

Lemma: The dilation $\delta_{\lambda}^{\mathfrak{a}}$ defines a group automorphism of $(G=\mathfrak{a}, \diamond)$.
Proof: It is sufficient to show that $\delta_{\lambda}^{\mathfrak{a}}$ induces a Lie algebra automorphism:

$$
\left[\delta_{\lambda}^{\mathfrak{a}}(X), \delta_{\lambda}^{\mathfrak{a}}(Y)\right]=\left[\sum_{j=1}^{r} \lambda^{j} a_{j}, \sum_{\ell=1}^{k} \lambda^{\ell} b_{\ell}\right]=\sum_{j, \ell=1}^{r} \lambda^{j+\ell} \underbrace{\left[a_{j}, a_{\ell}\right]}_{\in \mathfrak{a}_{j+\ell}}=\delta_{\lambda}^{\mathfrak{a}}([X, Y]) .
$$

Reminder: Subriemannian structure on a Carnot group

Definition

We call $\left(G \cong \mathfrak{a}, \diamond, \delta_{\lambda}^{\mathfrak{a}}\right)$ a homogeneous Carnot group.
Next: Equip ($G \cong \mathfrak{a}, \diamond$) with a Subriemannian structure:
Choose a linear basis of $\mathfrak{a}=\mathfrak{a}_{1} \oplus \mathfrak{a}_{2} \oplus \cdots \oplus \mathfrak{a}_{r}$ as follows:

- take the basis $\left[X_{1}, \cdots, X_{m}\right]$ of the first level \mathfrak{a}_{1}.
- for each $j=2, \cdots, r$ take a basis $\left[X_{1}^{(j)}, \cdots X_{\ell_{j}}^{(j)}\right]$ of \mathfrak{a}_{j}.

Definition

We call the basis

$$
\left[X_{1}, \cdots, X_{m}, X_{1}^{(2)}, \cdots X_{\ell_{2}}^{(2)}, \cdots, X_{1}^{(r)}, \cdots, X_{\ell_{r}}^{(r)}\right]
$$

an adapted basis of the Lie algebra \mathfrak{a}. This basis gives the concrete identification between \mathfrak{a} and \mathbb{R}^{N}.

Subriemannian structure on the Carnot group

Identifications

Via the above basis we make the following identifications:
Carnot group: $G \cong \mathfrak{a} \longleftrightarrow \mathbb{R}^{N}$,
dilation on $G: \delta_{\lambda}^{\mathfrak{a}} \longleftrightarrow D_{\lambda}(a)=\left(\lambda^{s_{1}} a_{1}, \cdots, \lambda^{s_{N}} a_{N}\right), \quad a \in \mathbb{R}^{N}$.
The exponents s_{j} in the dilation are given by:

$$
\left(s_{1}, \cdots, s_{N}\right)=(\underbrace{1, \cdots, 1}_{=\operatorname{dim} \mathfrak{a}_{1}}, \underbrace{2, \cdots, 2}_{\operatorname{dim} \mathfrak{a}_{2}}, \cdots, \underbrace{r, \cdots, r}_{\operatorname{dim} \mathfrak{a}_{r}})
$$

Identify $\left[X_{1}, \cdots, X_{m}\right.$] with left-invariant vector fields $\left[J_{1}, \cdots, J_{m}\right]$ on the homogeneous Carnot group $\left(\mathbb{R}^{N}, \diamond, D_{\lambda}\right)$. Then

$$
\mathcal{H}=\operatorname{span}\left\{J_{1}, \cdots, J_{m}\right\} \subset T \mathbb{R}^{N}
$$

is a bracket generating distribution in the tangent bundle of \mathbb{R}^{N}.

Sub-Laplacian on \mathbb{R}^{N}

Observation

The homogeneous Carnot group $\left(\mathbb{R}^{N}, \diamond, D_{\lambda}\right)$ is equipped via \mathcal{H} with a Subriemannian structure. Its (intrinsic) Sub-Laplacian has the form:

$$
\Delta_{\mathrm{sub}, G}=J_{1}^{2}+\cdots+J_{m}^{2},
$$

and defines a hypo-elliptic operator with underlying group structure.
Question: Now we have constructed two "sum-of-squares operators":

$$
\begin{aligned}
\mathcal{L} & =X_{1}^{2}+\cdots+X_{m}^{2} \quad\left(\text { on } \mathbb{R}^{n}\right) \\
\Delta_{\text {sub }, G} & =J_{1}^{2}+\cdots+J_{m}^{2}, \quad\left(\text { on } G=\mathbb{R}^{N} \text { where } N>n\right) .
\end{aligned}
$$

- What is the relation between these operators?
- Can we use knowledge on $\Delta_{\text {sub }, G}$ to study \mathcal{L} ?

From the Carnot group back to \mathbb{R}^{n}

Let $X \in \mathfrak{a}=\operatorname{Lie}\left\{X_{1}, \cdots, X_{m}\right\}$ be a δ_{λ}-homogeneous vector field on \mathbb{R}^{n}.
Consider the induced integral curve starting in $0 \in \mathbb{R}^{n}$:

$$
\psi_{t}^{X}: \mathbb{R} \rightarrow \mathbb{R}^{n} \text { with }\left\{\begin{array}{l}
\frac{d}{d t} \Psi_{t}^{X}=X \circ \Psi_{t}^{X}, \quad t \in \mathbb{R} \tag{*}\\
\Psi_{0}^{X}=0 .
\end{array}\right.
$$

On the completeness

Based on the δ_{λ}-homogeneity one can show that all vector fields $X \in \mathfrak{a}$ are complete, i.e. the induced flow (*) exists for all times $t \in \mathbb{R}$.

Consider the following map:

$$
\pi: \mathbb{R}^{N} \rightarrow \mathbb{R}^{n}, \quad \pi(a)=\left(\Psi_{t}^{X_{a}}(0)\right)_{\mid t=1},
$$

where $\mathfrak{a} \ni X_{a} \longleftrightarrow a \in \mathbb{R}^{N}$ in our identification above.

Lifting theorem by Folland

Theorem (Folland, 1977)

The map $\pi: \mathbb{R}^{N} \rightarrow \mathbb{R}^{n}$ has the following properties:

- for all $\lambda>0$ and all $a \in \mathbb{R}^{N}$ we have: a

$$
\pi\left(D_{\lambda}(a)\right)=\delta_{\lambda}(\pi(a))
$$

- π is a polynomial map.
- If J_{1}, \cdots, J_{N} are the left-invariant vector fields which correspond to the adapted basis of $\mathfrak{a} \cong \mathbb{R}^{N}$, then

$$
d \pi\left(J_{i}\right)(a)=X_{i}(\pi(a)), \quad \forall a \in \mathbb{R}^{N},
$$

where X_{i} is in the adapted basis of \mathfrak{a}.

[^2]W. Bauer (Leibniz Universität Hannover) Fundamental solution of degenerate operators

Reminder: lifting of an operator

Definition

We call a PDO $P_{\text {lift }}$ on $\mathbb{R}^{n} \times \mathbb{R}^{p}$ a lifting of P if
(a) $P_{\text {lift }}$ has smooth coefficients depending on $(x, \xi) \in \mathbb{R}^{n} \times \mathbb{R}^{p}$,
(b) For every $f \in C^{\infty}(\mathbb{R})$:

$$
P_{\text {lift }}(f \circ \pi)(x, \xi)=(P f)(x) \quad \text { where } \quad(x, \xi) \in \mathbb{R}^{n} \times \mathbb{R}^{p}
$$

Here $\pi: \mathbb{R}^{n} \times \mathbb{R}^{p} \rightarrow \mathbb{R}^{n}$ is the projection to the x-coordinates:

$$
\pi(x, y)=x
$$

Next:

One can choose coordinates in Folland's lifting theorem in such a way that

$$
\pi: \mathbb{R}^{N} \rightarrow \mathbb{R}^{n}
$$

becomes just the projection onto the first n coordinates of a vector in \mathbb{R}^{N}.

Lifting sums of squares

Theorem (S. Biagi, A. Bonfiglioli, 2017)
Let X_{1}, \cdots, X_{m} be δ_{λ}-homogeneous of degree 1 vector fields on \mathbb{R}^{n} with

$$
N=\operatorname{dim} \operatorname{Lie}\left\{X_{1}, \cdots, X_{m}\right\} .
$$

Then there is:

- a homogeneous Carnot group $G=\left(\mathbb{R}^{N}, \diamond, D_{\lambda}\right)$ with m generators and nilpotent of step r.
- a system $\left\{Z_{1}, \cdots, Z_{m}\right\}$ of Lie generators of the Lie algebra \mathfrak{a} of G such that

$$
Z_{i} \text { is a lifting of } X_{i}
$$

via the projection $\pi: \mathbb{R}^{N} \rightarrow \mathbb{R}^{n}$ onto the first n variables.
Remark: One can construct the lifting explicitly!

Lifting sums of squares

With the above notation we have:
Theorem (S. Biagi, A. Bonfiglioli, 2017)
The sub-Laplacian

$$
\Delta_{\mathrm{sub}, G}=Z_{1}^{2}+\cdots+Z_{m}^{2}
$$

on the homogeneous Carnot group $\left(\mathbb{R}^{N}, \diamond, D_{\lambda}\right)$, of the previous theorem is a lifting of the sum-of-squares operator:

$$
\mathcal{L}=\sum_{k=1}^{m} X_{k}^{2} .
$$

Fundamental solution

Assumptions:

Let X_{1}, \cdots, X_{m} be linearly independent smooth vector fields on \mathbb{R}^{n} with:

1. X_{j} for $j=1, \cdots, m$ is δ_{λ}-homogeneous of degree 1 .
2. Hörmander rank condition at zero:

$$
\operatorname{dim}\left\{X(0): X \in \operatorname{Lie}\left\{X_{1}, \cdots, X_{m}\right\}\right\}=n
$$

3. Define the sum-of-squares operator: $\mathcal{L}=\sum_{j=1}^{m} X_{j}^{2}$.
4. $G=\left(\mathbb{R}^{N}, \diamond, D_{\lambda}\right)=$ homogeneous Carnot group constructed above with sub-Laplacian:

$$
\Delta_{\mathrm{sub}, G}=Z_{1}^{2}+\cdots+Z_{m}^{2} .
$$

A theorem by Folland

Homogeneous norm: $\left(\sigma_{1}, \cdots, \sigma_{n}, \sigma_{1}^{*}, \cdots, \sigma_{p}^{*}\right)$ hom. dimensions of D_{λ} :

$$
h(x, \xi)=\sum_{j=1}^{n}\left|x_{j}\right|^{\frac{1}{\sigma_{j}}}+\sum_{k=1}^{p}\left|\xi_{k}\right|^{\frac{1}{\sigma_{k}^{*}}} \quad \text { where } \quad(x, \xi) \in \mathbb{R}^{N}=\mathbb{R}^{n} \times \mathbb{R}^{p}
$$

Theorem (G.B. Folland, 1973)
The sub-Laplacian $\Delta_{\text {sub, },}$ admits a unique fundamental solution γ_{G} with:
(a) $\gamma_{G} \in C^{\infty}\left(\mathbb{R}^{N} \backslash\{0\}, \mathbb{R}\right)$ and $\gamma_{G}>0$ on $\mathbb{R}^{N} \backslash\{0\}$,
(b) $\gamma_{G} \in L_{\text {loc }}^{1}\left(\mathbb{R}^{N}\right)$ and γ_{G} vanishes at infinity,
(c) γ_{G} is D_{λ}-homogeneous of degree $2-\left(\sum_{j=1}^{n} \sigma_{j}+\sum_{j=1}^{p} \sigma_{j}^{*}\right)=2-Q$ and:

$$
\Delta_{\mathrm{sub}, G}\left(\gamma_{G}\right)=-\delta_{0}
$$

(d) There is $C>0$ with: $\quad C^{-1} h^{2-Q}(x, \xi) \leq \gamma_{G}(x, \xi) \leq C h^{2-Q}(x, \xi)$.

Fundamental solution of \mathcal{L}

$$
\Gamma_{G}(x, \xi ; y, \eta)=\gamma_{G}\left((x, \xi)^{-1} \diamond(y, \eta)\right), \quad(x, \xi) \neq(y, \eta)
$$

Theorem (S. Biagi, A. Bonfiglioli, 17)
Assume that $q=\sum_{j=1}^{n} \sigma_{j}>2$ and $G=\left(\mathbb{R}^{N}, \diamond, D_{\lambda}\right)=$ as above.
(a) Then

$$
\Gamma(x, y):=\int_{\mathbb{R}^{p}} \Gamma_{G}(x, 0 ; y, \eta) d \eta \quad(x \neq y)
$$

is a fundamental solution for $\mathcal{L}=X_{1}^{1}+\cdots+X_{m}^{2}$.
(b) There is a global estimate:

$$
\begin{aligned}
C^{-1} \int_{\mathbb{R}^{p}} h^{2-Q}\left((x, 0)^{-1} \diamond(y, \eta)\right) d \eta \leq \Gamma(x, y) \leq \\
\leq C \int_{\mathbb{R}^{p}} h^{2-Q}\left((x, 0)^{-1} \diamond(y, \eta)\right) d \eta
\end{aligned}
$$

W. Bauer (Leibniz Universität Hannover) Fundamental solution of degenerate operators

Fundamental solution of \mathcal{L} (continued)

Theorem (S. Biagi, A. Bonfiglioli, 17)
With the previous notations: $\Gamma(x, y)$ has the δ_{λ}-homogeneity:

$$
\text { Put: } \quad \Gamma\left(\delta_{\lambda}(x) ; \delta_{\lambda}(y)\right)=\lambda^{2-q} \cdot \Gamma(x, y) \quad \text { where } \quad \mathbb{R}^{n} \ni x \neq y, \quad \lambda>0
$$

Moreover $\Gamma(x, y)$ has the following properties:
(1) Symmetry: $\Gamma(x, y)=\Gamma(y, x)$ for all $x \neq y \in \mathbb{R}^{n}$,
(2) $\Gamma(x, \cdot)=\Gamma(\cdot, x)$ is \mathcal{L}-harmonic on $\mathbb{R}^{n} \backslash\{x\}$,
(3) $\Gamma(x, \cdot)=\Gamma(\cdot, x)$ vanishes at infinity uniformly on compact sets,
(4) Outside the diagonal Diag $=\left\{(x, x): x \in \mathbb{R}^{n}\right\}$ in $\mathbb{R}^{n} \times \mathbb{R}^{n}$:

$$
\Gamma \in L_{\text {loc }}^{1}\left(\mathbb{R}^{n} \times \mathbb{R}^{n} \backslash \text { Diag }\right) \cap C^{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}^{n} \backslash \text { Diag }\right)
$$

Example

Consider the Grushin operator on \mathbb{R}^{2} with dilation $\delta_{\lambda}\left(x_{1}, x_{2}\right)=\left(\lambda x_{1}, \lambda^{2} x_{2}\right)$:

$$
\mathcal{L}=X_{1}^{2}+X_{2}^{2} \quad \text { where } \quad X_{1}=\partial_{x_{1}}, \quad X_{2}=x_{1} \partial_{x_{2}}
$$

- Carnot group: $G=\left(\mathbb{R}^{3}, \diamond, D_{\lambda}\right)$ with

$$
D_{\lambda}\left(x_{1},, x_{2}, \xi\right)=\left(\lambda x_{1}, \lambda^{2} x_{2}, \lambda \xi\right) \quad \text { and } \quad Q=4
$$

- Product on G :

$$
\left(x_{1}, x_{2}, \xi\right) \diamond\left(y_{1}, y_{2}, \eta\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}+x_{1} \eta, \xi+\eta\right) .
$$

- Liftings of $X_{1} \rightarrow Z_{1}=\partial_{x_{1}}$ and $X_{2} \rightarrow Z_{2}=x_{1} \partial_{x_{2}}+\partial_{\xi}$ and

$$
\mathcal{L}=X_{1}^{2}+X_{2}^{2} \quad \text { lifts to } \quad \Delta_{\text {sub }}=Z_{1}^{2}+Z_{2}^{2}
$$

Example

- Fundamental solution of $\Delta_{\text {sub }}$ for $(x, \xi) \neq(0,0)$:

$$
\Gamma_{\Delta_{\text {sub }}}(x, \xi)=\frac{c}{\sqrt{\left(x_{1}^{2}+\xi^{2}\right)^{2}+16\left(x_{2}-\frac{1}{2} x_{1} \xi\right)^{2}}}
$$

Conclusion

The fundamental solution of \mathcal{L} is given by the fiber integral:

$$
\begin{aligned}
& \Gamma\left(x_{1}, x_{2} ; y_{1}, y_{2}\right)= \\
& \quad=c \int_{\mathbb{R}} \frac{d \eta}{\sqrt{\left(\left(x_{1}-y_{1}\right)^{2}+\eta^{2}\right)^{2}+4\left(2 x_{2}-2 y_{2}+\eta\left(x_{1}+y_{1}\right)\right)^{2}}} .
\end{aligned}
$$

Higher step groups and Grushin type operators

Example: Consider the Engel group \mathcal{E}_{4} as a matrix group

$$
\mathcal{E}_{4}=\left\{\left(\begin{array}{cccc}
1 & x & \frac{x^{2}}{2} & z \\
0 & 1 & x & w \\
0 & 0 & 1 & y \\
0 & 0 & 0 & 1
\end{array}\right): x, y, w, z \in \mathbb{R}\right\} \subset \mathbb{R}^{4 \times 4}
$$

The corresponding Lie algebra \mathfrak{e}_{4} has the following bracket relations:

$$
[X, Y]=W \quad \text { and } \quad[X, W]=Z
$$

A 3-step Carnot group

The Engel group \mathcal{E}_{4} is the lowest dimensional Carnot group of step 3.

Calculate the left-invariant vector fields X and Y on $\mathcal{E}_{4}{ }^{3}$.

$$
\begin{aligned}
& X:=\frac{\partial}{\partial x}-\frac{y}{2} \frac{\partial}{\partial w}+\left(\frac{w}{2}-\frac{x y}{12}\right) \frac{\partial}{\partial z} \\
& Y:=\frac{\partial}{\partial y}+\frac{x}{2} \frac{\partial}{\partial w}-\frac{x^{2}}{12} \frac{\partial}{\partial z}
\end{aligned}
$$

Lemma

The vector fields X and Y are skew-symmetric on \mathcal{E}_{4}. They span a bracket generating distribution:

$$
\mathcal{H}:=\operatorname{span}\{X, Y\} .
$$

Since $W=[X, Y]$ and $Z=[X, W]=[X,[X, Y]]$.

$$
\Delta_{\text {sub }}^{\mathcal{E}_{4}}=-\frac{1}{2}\left\{X^{2}+Y^{2}\right\}=\text { Sub-Laplacian. }
$$

[^3]Consider the sub-group

$$
\mathcal{N}=\{s X+t W: s, t \in \mathbb{R}\} \cong \mathbb{R}^{2}
$$

of $\mathcal{E}_{4} \cong \mathfrak{e}_{4}$. One obtains a fiber bundle
$\rho: \mathcal{E}_{4} \longrightarrow \mathcal{N} \backslash \mathcal{E}_{4} \cong \mathbb{R}^{2}, \quad$ where $\quad \rho(x, y, w, z)=\left(x, z+\frac{x w}{2}+\frac{y x^{2}}{6}\right)$.

Observation

The vector fields X and Y descend via $d \rho$ to $\mathcal{N} \backslash \mathcal{E}_{4}$. We obtain the Grushin type operator

$$
\mathcal{G}=-d \rho(X)^{2}-d \rho(Y)^{2}=-\frac{\partial^{2}}{\partial u^{2}}+\frac{u^{4}}{4} \frac{\partial^{2}}{\partial v^{2}} .
$$

Perform a partial Fourier transform with respect to the variable v. We obtain a family of operators on \mathbb{R}

$$
\mathcal{L}_{\eta}:=-\frac{\partial^{2}}{\partial u^{2}}+\frac{u^{4}}{4} \eta^{2}=\text { "quartic oscillator" if } \eta \neq 0
$$

These operators are elliptic if $\eta \neq 0$.
Calculating the heat kernel

- We could obtain the heat kernel of \mathcal{G} from the heat kernel of $\Delta_{\text {sub }}^{\mathcal{E}_{4}}$ via a fiber integration:

More precisely: Let $\Phi: \mathcal{N} \times\left(\mathcal{N} \backslash \mathcal{E}_{4}\right) \longrightarrow \mathcal{E}_{4}$, be a trivialization of the bundle ${ }^{a}$ then:

$$
K^{\mathcal{G}}(t, \rho(x), y)=\int_{\mathbb{R}^{2}} K^{\Delta_{\text {sub }}^{\varepsilon_{4}}}(t, x, \Phi(u, y)) d u .
$$

[^4]
Thank you for your attention!

Distribution and horizontal curve

Front of SR geodesics at time T (picture by: U. Boscain, D. Barilari)

[^0]: ${ }^{1}$ PDO $=$ partial differential operator

[^1]: ${ }^{2}$ S. Biagi, A. Bonfiglioli, The existence of a global fundamental solution for homogeneous Hörmander operators via a global lifting method, Proc. London Math. Soc. (3), 114 (2017), 855-889.

[^2]: ${ }^{\text {a }}$ G.B. Folland, on the Rothschild-Stein lifting theorem, Comm. Partial Differential Equations 2 (1977), 161-207.

[^3]: ${ }^{3}$ Recall: one uses the Baker-Campbell-Hausdorff formula

[^4]: ${ }^{\text {a }}$ trivialization means: $\rho \circ \Phi(x, y)=x$.

