Global lifting and fundamental solution of degenerate operators

5. lecture

"Singular Integrals on nilpotent Lie groups and related topics" Summer school, Universität Göttingen

Wolfram Bauer

Leibniz Universität Hannover

Sept. 19-23, 2022

W. Bauer (Leibniz Universität Hannover) Fundamental solution of degenerate operators

Sept. 19-23, 2022

1/37

Outline

- 1. Fundamental solutions and homogeneous vector fields
- 2. A global lifting theorem by Folland
- 3. Fundamental solutions via liftings

Fundamental solution

Consider a linear PDO ¹ P on \mathbb{R}^n of order d, i.e.

$$P = \sum_{|lpha| \leq d} a_lpha(x) D_x^lpha \quad ext{where} \quad a_lpha(x) \in C^\infty(\mathbb{R}^n, \mathbb{R})$$

where we use the standard notation

$$D_x^{\alpha} = \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} \cdots \partial x_n^{\alpha_n}} \quad \text{for} \quad \alpha \in \mathbb{N}_0^n.$$

Definition

Call $\Gamma: \{(x,y) \in \mathbb{R}^n \times \mathbb{R}^n : x \neq y\} \to \mathbb{R}$ a global fundamental solution if

- For every $x \in \mathbb{R}^n$ we have $\Gamma(x, \cdot) \in L^1_{loc}(\mathbb{R}^n)$.
- For every $\varphi \in C_0^{\infty}(\mathbb{R}^n)$

$$\int_{\mathbb{R}^n} \Gamma(x,y) P^* \varphi(y) dy = -\varphi(x).$$

¹PDO=partial differential operator

W. Bauer (Leibniz Universität Hannover) Fundamental solution of degenerate operators

Sept. 19-23, 2022

3/37

Fundamental solution

Remarks

• The defining equation of the fundamental solution is shortly written:

$$P\Gamma_{x} = -\delta_{x} = Dirac distribution supported at x.$$

- Existence of the fundamental solution is not always guaranteed. Showing existence (or non-existence) can be complicated.
- In general, fundamental solutions are not unique, e.g. one may add a P-harmonic function h i.e.

$$Ph = 0$$

to a fundamental solution and gets another one.

From the heat kernel to the inverse

Let $\mathcal{L} = \mathcal{L}^*$ be a partial differential operator on \mathbb{R}^n_{\times} (smooth coefficients).

Definition

The corresponding heat operator on $\mathbb{R}^n_{\times} \times \mathbb{R}_t$ is defined by $\mathcal{H} = \mathcal{L} - \partial_t$.

Assumption:

 \mathcal{H} admits a heat kernel $\{p_t(x,y)\}_{t>0}$ which is integrable with respect to t. In particular:

$$\mathcal{L}_{y}p_{t}(x,y)=\partial_{t}p_{t}(x,y).$$

Observation: At least formally, a fundamental solution of \mathcal{L} is given by

$$\Gamma(x,y) = \int_0^\infty p_t(x,y)dt.$$

(This can be made precise in many cases).

W. Bauer (Leibniz Universität Hannover) Fundamental solution of degenerate operators

Sept. 19-23, 2022

5/37

From the heat kernel to the inverse

In fact (formal calculation): Let $\varphi \in C_0^{\infty}(\mathbb{R}^n)$, then

$$\int_{\mathbb{R}^n} \Gamma(x,y) \mathcal{L}^* \varphi(y) dy = \int_{\mathbb{R}^n} \int_0^{\infty} p_t(x,y) dt \mathcal{L}^* \varphi(y) dy$$

$$= \int_{\mathbb{R}^n} \int_0^{\infty} \mathcal{L}_y p_t(x,y) dt \varphi(y) dy$$

$$= \int_{\mathbb{R}^n} \int_0^{\infty} \partial_t p_t(x,y) dt \varphi(y) dy$$

$$= \int_{\mathbb{R}^n} \left[p_t(x,y) \right]_0^{\infty} \varphi(y) dy$$

$$= -\lim_{t \to 0} \int_{\mathbb{R}^n} p_t(x,y) \varphi(y) dy = -\varphi(x).$$

Here we have assumed that $\lim_{t\to\infty} p_t(x,y) = 0$.

Reducing the dimension

Here is another example:

Consider the Laplace operator Δ_n on \mathbb{R}^n with n > 2 and let $p \ge 1$.

$$\Delta_n = \sum_{j=1}^n \frac{\partial^2}{\partial x_j^2}$$
 and $\Delta_{n+p} = \Delta_n + \sum_{j=n+1}^{n+p} \frac{\partial^2}{\partial x_j^2}$.

Then Δ_n has the fundamental solution

$$p_n(x,y) := c_n ||x-y||^{2-n}.$$

Observation

We can consider Δ_{n+p} for $p\geq 1$ as a

"lifting of Δ_n ".

i.e. it acts on functions only depending on the variable x_1, \dots, x_n as Δ_n .

W. Bauer (Leibniz Universität Hannover) Fundamental solution of degenerate operators

Sept. 19-23, 2022

Reducing dimension

Lemma

We obtain the fundamental solution of Δ_n from the fundamental solution of Δ_{n+p} via a "fiber integration".

$$c\left(\sqrt{x_1^2 + \dots + x_n^2}\right)^{2-n} =$$

$$= \int_{\mathbb{R}^p} \left(\sqrt{x_1^2 + \dots + x_n^2 + t_1^2 + \dots + t_p^2}\right)^{2-n-p} dt_1 \dots dt_p = (*).$$

Proof: The change of variables $t = ||x||\tau$ with $\tau \in \mathbb{R}^p$ and $x \neq 0$ gives:

$$(*) = \|x\|^p \int_{\mathbb{R}^p} \left(\|x\|^2 + \|\tau\|^2 \|x\|^2 \right)^{\frac{2-n-p}{2}} d\tau$$
$$= \|x\|^{2-n} \int_{\mathbb{R}^p} (1 + \|\tau\|^2)^{\frac{2-n-p}{2}} d\tau.$$

Lifting

We describe recent work by **S. Biagi and A. Bonfiglioli**: ² Let P be a PDO with smooth coefficients.

Definition

We call a PDO P_{lift} on $\mathbb{R}^n \times \mathbb{R}^p$ a lifting of P if

- (a) P_{lift} has smooth coefficients depending on $(x, \xi) \in \mathbb{R}^n \times \mathbb{R}^p$.
- (b) For every $f \in C^{\infty}(\mathbb{R})$:

$$P_{\mathsf{lift}}(f \circ \pi)(x, \xi) = (Pf)(x)$$
 where $(x, \xi) \in \mathbb{R}^n \times \mathbb{R}^p$.

Here $\pi: \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^n$ is the projection to the x-coordinates:

$$\pi(x,y)=x.$$

W. Bauer (Leibniz Universität Hannover) Fundamental solution of degenerate operators

Sept. 19-23, 2022

9/37

Example and equivalent formulation

Observation: P_{lift} is a **lifting** of P if and only if

$$P_{\mathsf{lift}} = P + R$$
 where $R = \sum_{\beta \neq 0} r_{\alpha,\beta}(x,\xi) D_x^{\alpha} D_{\xi}^{\beta}$.

Example

Consider the Grushin operator on \mathbb{R}^2 :

$$\mathcal{G} := (\partial_{x_1})^2 + (x_1 \partial_{x_2})^2.$$

A lifting of \mathcal{G} to \mathbb{R}^3 is given by:

$$\widetilde{\mathcal{G}} = (\partial_{x_1})^2 + (\partial_{\xi} + x_1 \partial_{x_2})^2 = \mathcal{G} + \underbrace{\partial_{\xi}^2 + 2x_1 \partial_{x_2} \partial_{\xi}}_{R}.$$

Remark: $\widetilde{\mathcal{G}}$ is up to a change of variables the sub-Laplacian of the Heisenberg group. Its heat kernel is known do to the group structure.

²S. Biagi, A. Bonfiglioli, The existence of a global fundamental solution for homogeneous Hörmander operators via a global lifting method, Proc. London Math. Soc. (3), 114 (2017), 855-889.

Questions

Assumption

Let P_{lift} be a lifting of P and P_{lift} admits a global fundamental solution Γ .

One may ask:

- Does P admit a fundamental solution $\widetilde{\Gamma}$?
- If yes, can we obtain $\widetilde{\Gamma}$ by "via integration over some variables" in Γ ?
- If we do not know Γ explicitly, but if we have estimates on Γ. Can we use them to obtain estimates on Γ ?
- Why should we lift at all? Adding more variables should make life more complicated.

W. Bauer (Leibniz Universität Hannover) Fundamental solution of degenerate operators

Sept. 19-23, 2022

11/37

Homogeneous group and dilations

Let $G = (\mathbb{R}^n, *)$ be a nilpotent Lie group.

Definition (homogeneous group)

We call G a homogeneous group, it there is $\sigma = (\sigma_1, \dots, \sigma_n) \in \mathbb{R}^n$ with

$$1 \leq \sigma_1 \leq \sigma_2 \leq \cdots \leq \sigma_n$$

such that the dilation $\delta_{\lambda}: G \to G$ with

$$\delta_{\lambda}(x_1, \cdots, x_n) = (\lambda^{\sigma_1} x_1, \cdots, \lambda^{\sigma_n} x_n)$$

is an automorphism of G for every $\lambda > 0$, i.e.

$$\delta_{\lambda}(g) * \delta_{\lambda}(h) = \delta_{\lambda}(g * h).$$

Remark:

The dilations $\{\delta_{\lambda}\}_{\lambda}$ form a one-parameter group of automorphisms.

The homogeneous structure of the Heisenberg group

Example: Consider again the Heisenberg group $\mathbb{H}_3 \cong \mathbb{R}^3$ with dilation:

$$\delta_{\lambda}(x_1, x_2, x_3) := (\lambda x_1, \lambda x_2, \lambda^2 x_3)$$
 with $(\lambda > 0)$.

Then we have

$$\delta_{\lambda}(x_{1}, x_{2}, x_{3}) * \delta_{\lambda}(y_{1}, y_{2}, y_{3})
= (\lambda x_{1}, \lambda x_{2}, \lambda^{2} x_{3}) * (\lambda y_{1}, \lambda y_{2}, \lambda^{2} y_{3})
= (\lambda(x_{1} + y_{1}), \lambda(x_{2} + y_{2}), \lambda^{2}(x_{3} + y_{3}) + \frac{1}{2}[\lambda x_{1} \lambda y_{2} - \lambda y_{1} \lambda x_{2}]
= \lambda^{2}((x_{3} + y_{3}) + \frac{1}{2}[x_{1} y_{2} - y_{1} x_{2}])
= \delta_{\lambda}((x_{1}, x_{2}, x_{3}) * (y_{1}, y_{2}, y_{3})).$$

Therefore \mathbb{H}_3 is a homogeneous Lie group with $\sigma = (1, 1, 2)$.

W. Bauer (Leibniz Universität Hannover) Fundamental solution of degenerate operators

Sept. 19-23, 2022

13 / 37

Homogeneous vector fields

Having dilations $\{\delta_{\lambda}\}_{\lambda}$ we can define δ_{λ} -homogeneous vector fields:

Definition

Let X_1, \dots, X_m be C^{∞} -vector fields in $G = (\mathbb{R}^n, *)$. Then we call X_i homogeneous of degree 1 if:

$$X_i(f \circ \delta_\lambda) = \lambda(X_i f) \circ \delta_\lambda \quad \forall \lambda > 0, \ \forall f \in C^\infty(\mathbb{R}^n, \mathbb{R}).$$

Further assumptions: Assume that X_1, \dots, X_m

- are linearly independent as linear differential operators,
- fulfill the Hörmander bracket generating condition, i.e for all $g \in G$:

$$\dim \left\{ X(g) \ : \ X \in \operatorname{Lie}\{X_1, \cdots, X_m\} \right\} = n.$$

Note: If X and Y are δ_{λ} -homogeneous of degree d_1 and d_2 , respectively. Then [X, Y] is δ_{λ} -homogeneous of degree $d_1 + d_2$.

V. Bauer (Leibniz Universität Hannover) Fundamental solution of degenerate operators

Sept. 19-23, 2022

Example:

Consider again the Grushin operator \mathcal{G} on \mathbb{R}^2 defined by

$$G = (\partial_{x_1})^2 + (x_1 \partial_{x_2})^2 = X_1^2 + X_2^2,$$

On \mathbb{R}^2 define the dilation $\delta_{\lambda}(x_1, x_2) := (\lambda x_1, \lambda^2 x_2)$.

Observation

• The bracket generating condition is fulfilled with m=2, since

$$\dim \left\{ X_1 = \partial_{x_1}, X_2 = x_1 \partial_{x_2}, \left[X_1, X_2 \right] = \partial_{x_2} \right\} = 3.$$

• X_1 and X_2 are homogeneous of degree 1: Let $g = (x_1, x_2)$, then

$$X_{1}(f \circ \delta_{\lambda})(g) = \partial_{x_{1}}[f(\lambda x_{1}, \lambda^{2} x_{2})] = \lambda(\partial_{x_{1}}f)(\lambda x_{1}, \lambda^{2} x_{2}) = \frac{\lambda}{\lambda}(X_{1}f) \circ \delta_{\lambda}(g),$$

$$X_{2}(f \circ \delta_{\lambda})(g) = x_{1}\partial_{x_{2}}[f(\lambda x_{1}, \lambda^{2} x_{2})] = \lambda(\lambda x_{1})[\partial_{x_{2}}f] \circ \delta_{\lambda}(g) = \frac{\lambda}{\lambda}(X_{2}f) \circ \delta_{\lambda}(g)$$

W. Bauer (Leibniz Universität Hannover) Fundamental solution of degenerate operators

Sept. 19-23, 2022

15 / 37

From homogeneous vector fields to a nilpotent Lie algebra

Let $\mathcal{X} = \{X_1, \dots, X_m\}$ be homogeneous vector fields on \mathbb{R}^n with the previous assumptions. We consider the Lie algebra generated by \mathcal{X} :

$$\mathfrak{a}:=\operatorname{Lie}\left\{X_{1},\cdots,X_{m}\right\}$$

$$= smallest\ \textit{Lie subalgebra of vector fields on }\mathbb{R}^{n}\ \textit{containing }\mathcal{X}.$$

The δ_{λ} -homogeneity of the vector fields implies the following:

Lemma

The Lie algebra a is finite dimensional and it corresponds to a Carnot group

$$\mathfrak{a} = \mathfrak{a}_1 \oplus \mathfrak{a}_2 \oplus \cdots \oplus \mathfrak{a}_r$$
 and $\begin{cases} \left[\mathfrak{a}_1, \mathfrak{a}_{i-1}\right] = \mathfrak{a}_i, & 2 \leq i \leq r, \\ \left[\mathfrak{a}_1, \mathfrak{a}_r\right] = \{0\}. \end{cases}$

Here, the "first level" is $\mathfrak{a}_1 = \operatorname{span}\{X_1, \cdots, X_m\}$.

From the nilpotent Lie algebra to a Carnot group

Reminder:

We can equip \mathfrak{a} with a group structure via exponential coordinates: Via the Campbell-Baker-Hausdorff formula the product is:

$$X \diamond Y = X + Y + \frac{1}{2}[X, Y] + \frac{1}{12}[X, [X, Y]] - \frac{1}{12}[Y, [X, Y]] + \cdots$$
 (finite).

Summing up:

Lemma

Let $N := \dim \mathfrak{a}$. Then $G = (\mathfrak{a} \cong \mathbb{R}^N, \diamond)$ is a Carnot group with Lie algebra (isomorphic to) a. Moreover,

$$\mathfrak{a} = \mathsf{Lie}\Big\{X_1, \cdots, X_m\Big\}$$

is a Lie algebra of smooth vector fields on \mathbb{R}^n (we can "exponentiate").

W. Bauer (Leibniz Universität Hannover) Fundamental solution of degenerate operators

Sept. 19-23, 2022

17 / 37

A family of dilations on $\mathfrak{a} \cong G$

Recall that \mathfrak{a} has a decomposition:

$$\mathfrak{a} = \mathfrak{a}_1 \oplus \mathfrak{a}_2 \oplus \cdots \oplus \mathfrak{a}_r$$
 with $[\mathfrak{a}_1, \mathfrak{a}_{i-1}] = \mathfrak{a}_i$.

Definition

For each $\lambda > 0$ define a dilation $\{\delta_{\lambda}^{\mathfrak{a}}\}_{\lambda}$ on $\mathfrak{a} \cong \mathbb{R}^{N}$ via the decomposition of elements:

$$\delta^{\mathfrak{a}}_{\lambda}(X) = \sum_{k=1}^{r} \lambda^{k} a_{k}$$
 where $X = \sum_{k=1}^{r} a_{k}$ and $a_{k} \in \mathfrak{a}_{k}$.

Lemma: The dilation $\delta^{\mathfrak{a}}_{\lambda}$ defines a group automorphism of ($G = \mathfrak{a}, \diamond$).

Proof: It is sufficient to show that $\delta^{\mathfrak{a}}_{\lambda}$ induces a Lie algebra automorphism:

$$\left[\delta^{\mathfrak{a}}_{\lambda}(X), \delta^{\mathfrak{a}}_{\lambda}(Y)\right] = \left[\sum_{j=1}^{r} \lambda^{j} a_{j}, \sum_{\ell=1}^{k} \lambda^{\ell} b_{\ell}\right] = \sum_{j,\ell=1}^{r} \lambda^{j+\ell} \underbrace{\left[a_{j}, a_{\ell}\right]}_{\in \mathfrak{a}_{i+\ell}} = \delta^{\mathfrak{a}}_{\lambda}([X, Y]).$$

Reminder: Subriemannian structure on a Carnot group

Definition

We call $(G \cong \mathfrak{a}, \diamond, \delta_{\lambda}^{\mathfrak{a}})$ a homogeneous Carnot group.

Next: Equip $(G \cong \mathfrak{a}, \diamond)$ with a Subriemannian structure:

Choose a linear basis of $\mathfrak{a} = \mathfrak{a}_1 \oplus \mathfrak{a}_2 \oplus \cdots \oplus \mathfrak{a}_r$ as follows:

- take the basis $[X_1, \dots, X_m]$ of the first level \mathfrak{a}_1 .
- for each $j=2,\cdots,r$ take a basis $[X_1^{(j)},\cdots X_{\ell_i}^{(j)}]$ of \mathfrak{a}_j .

Definition

We call the basis

$$\left[X_{1}, \cdots, X_{m}, X_{1}^{(2)}, \cdots, X_{\ell_{2}}^{(2)}, \cdots, X_{1}^{(r)}, \cdots, X_{\ell_{r}}^{(r)}\right]$$

an adapted basis of the Lie algebra a. This basis gives the concrete identification between \mathfrak{a} and \mathbb{R}^N .

W. Bauer (Leibniz Universität Hannover) Fundamental solution of degenerate operators

Sept. 19-23, 2022

19/37

Subriemannian structure on the Carnot group

Identifications

Via the above basis we make the following identifications:

Carnot group: $G \cong \mathfrak{a} \longleftrightarrow \mathbb{R}^N$,

dilation on $G: \delta^{\mathfrak{a}}_{\lambda} \longleftrightarrow D_{\lambda}(a) = (\lambda^{s_1}a_1, \cdots, \lambda^{s_N}a_N), \quad a \in \mathbb{R}^N.$

The exponents s_i in the dilation are given by:

$$(s_1, \dots, s_N) = (\underbrace{1, \dots, 1}_{\text{edim } a_1}, \underbrace{2, \dots, 2}_{\text{dim } a_2}, \dots, \underbrace{r, \dots, r}_{\text{dim } a_r}).$$

Identify $[X_1, \dots, X_m]$ with left-invariant vector fields $[J_1, \dots, J_m]$ on the homogeneous Carnot group $(\mathbb{R}^N,\diamond,D_\lambda)$. Then

$$\mathcal{H} = \mathsf{span} \Big\{ J_1, \cdots, J_m \Big\} \subset \mathcal{T} \mathbb{R}^{\mathcal{N}}$$

is a bracket generating distribution in the tangent bundle of \mathbb{R}^N .

Sub-Laplacian on \mathbb{R}^N

Observation

The homogeneous Carnot group $(\mathbb{R}^N,\diamond,D_\lambda)$ is equipped via $\mathcal H$ with a Subriemannian structure. Its (intrinsic) Sub-Laplacian has the form:

$$\Delta_{\mathsf{sub},G} = J_1^2 + \cdots + J_m^2,$$

and defines a hypo-elliptic operator with underlying group structure.

Question: Now we have constructed two "sum-of-squares operators":

$$\mathcal{L}=X_1^2+\cdots+X_m^2$$
 (on \mathbb{R}^n) $\Delta_{\mathrm{sub},G}=J_1^2+\cdots+J_m^2$, (on $G=\mathbb{R}^N$ where $N>n$).

- What is the relation between these operators?
- Can we use knowledge on $\Delta_{\mathsf{sub},G}$ to study \mathcal{L} ?

W. Bauer (Leibniz Universität Hannover) Fundamental solution of degenerate operators

Sept. 19-23, 2022

21 / 37

From the Carnot group back to \mathbb{R}^n

Let $X \in \mathfrak{a} = \text{Lie}\{X_1, \dots, X_m\}$ be a δ_{λ} -homogeneous vector field on \mathbb{R}^n . Consider the induced integral curve starting in $0 \in \mathbb{R}^n$:

$$\Psi_t^X: \mathbb{R} o \mathbb{R}^n \quad \textit{with} \quad \begin{cases} rac{d}{dt} \Psi_t^X = X \circ \Psi_t^X, & t \in \mathbb{R} \\ \Psi_0^X = 0. \end{cases}$$
 (*)

On the completeness

Based on the δ_{λ} -homogeneity one can show that all vector fields $X \in \mathfrak{a}$ are complete, i.e. the induced flow (*) exists for all times $t \in \mathbb{R}$.

Consider the following map:

$$\pi: \mathbb{R}^N o \mathbb{R}^n, \qquad \pi(a) = \left(\Psi^{X_a}_t(0)\right)_{|_{t=1}},$$

where $\mathfrak{a} \ni X_a \longleftrightarrow a \in \mathbb{R}^N$ in our identification above.

Lifting theorem by Folland

Theorem (Folland, 1977)

The map $\pi: \mathbb{R}^N \to \mathbb{R}^n$ has the following properties:

• for all $\lambda > 0$ and all $a \in \mathbb{R}^N$ we have: ^a

$$\pi\Big(D_{\lambda}(a)\Big)=\delta_{\lambda}\big(\pi(a)\big).$$

- \bullet π is a polynomial map.
- If J_1, \dots, J_N are the left-invariant vector fields which correspond to the adapted basis of $\mathfrak{a} \cong \mathbb{R}^N$, then

$$d\pi(J_i)(a) = X_i(\pi(a)), \quad \forall \ a \in \mathbb{R}^N,$$

where X_i is in the adapted basis of \mathfrak{a} .

^aG.B. Folland, on the Rothschild-Stein lifting theorem, Comm. Partial Differential Equations 2 (1977), 161-207.

V. Bauer (Leibniz Universität Hannover) Fundamental solution of degenerate operators

Sept. 19-23, 2022

23 / 37

Reminder: lifting of an operator

Definition

We call a PDO P_{lift} on $\mathbb{R}^n \times \mathbb{R}^p$ a lifting of P if

- (a) P_{lift} has smooth coefficients depending on $(x, \xi) \in \mathbb{R}^n \times \mathbb{R}^p$,
- (b) For every $f \in C^{\infty}(\mathbb{R})$:

$$P_{\mathsf{lift}}(f \circ \pi)(x, \xi) = (Pf)(x)$$
 where $(x, \xi) \in \mathbb{R}^n \times \mathbb{R}^p$.

Here $\pi: \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^n$ is the projection to the x-coordinates:

$$\pi(x,y)=x.$$

Next:

One can choose coordinates in Folland's lifting theorem in such a way that

$$\pi: \mathbb{R}^{N} \to \mathbb{R}^{n}$$

becomes just the projection onto the first n coordinates of a vector in \mathbb{R}^N .

Lifting sums of squares

Theorem (S. Biagi, A. Bonfiglioli, 2017)

Let X_1, \dots, X_m be δ_{λ} -homogeneous of degree 1 vector fields on \mathbb{R}^n with

$$N = \dim \operatorname{Lie}\{X_1, \cdots, X_m\}.$$

Then there is:

- a homogeneous Carnot group $G = (\mathbb{R}^N, \diamond, D_\lambda)$ with m generators and nilpotent of step r.
- a system $\{Z_1, \dots, Z_m\}$ of Lie generators of the Lie algebra $\mathfrak a$ of Gsuch that

$$Z_i$$
 is a lifting of X_i

via the projection $\pi: \mathbb{R}^N \to \mathbb{R}^n$ onto the first n variables.

Remark: One can construct the lifting explicitly!

W. Bauer (Leibniz Universität Hannover) Fundamental solution of degenerate operators

Sept. 19-23, 2022

25 / 37

Lifting sums of squares

With the above notation we have:

Theorem (S. Biagi, A. Bonfiglioli, 2017)

The sub-Laplacian

$$\Delta_{\mathsf{sub},G} = Z_1^2 + \dots + Z_m^2$$

on the homogeneous Carnot group $(\mathbb{R}^N,\diamond,D_\lambda)$, of the previous theorem is a lifting of the sum-of-squares operator:

$$\mathcal{L} = \sum_{k=1}^{m} X_k^2.$$

Fundamental solution

Assumptions:

Let X_1, \dots, X_m be linearly independent smooth vector fields on \mathbb{R}^n with:

- 1. X_j for $j=1,\cdots,m$ is δ_{λ} -homogeneous of degree 1.
- 2. Hörmander rank condition at zero:

$$\dim \left\{ X(0) \ : \ X \in \operatorname{Lie}\{X_1, \cdots, X_m\} \right\} = n.$$

- 3. Define the sum-of-squares operator: $\mathcal{L} = \sum_{i=1}^{m} X_i^2$.
- 4. $G = (\mathbb{R}^N, \diamond, D_\lambda) = \text{homogeneous Carnot group constructed above}$ with sub-Laplacian:

$$\Delta_{\mathsf{sub},G} = Z_1^2 + \dots + Z_m^2$$

W. Bauer (Leibniz Universität Hannover) Fundamental solution of degenerate operators

Sept. 19-23, 2022

27 / 37

A theorem by Folland

Homogeneous norm: $(\sigma_1, \dots, \sigma_n, \sigma_1^*, \dots, \sigma_p^*)$ hom. dimensions of D_{λ} :

$$h(x,\xi) = \sum_{j=1}^{n} |x_j|^{\frac{1}{\sigma_j}} + \sum_{k=1}^{p} |\xi_k|^{\frac{1}{\sigma_k^*}} \quad \text{where} \quad (x,\xi) \in \mathbb{R}^N = \mathbb{R}^n \times \mathbb{R}^p.$$

Theorem (G.B. Folland, 1973)

The sub-Laplacian $\Delta_{sub,G}$ admits a unique fundamental solution γ_G with:

- (a) $\gamma_G \in C^{\infty}(\mathbb{R}^N \setminus \{0\}, \mathbb{R})$ and $\gamma_G > 0$ on $\mathbb{R}^N \setminus \{0\}$,
- (b) $\gamma_G \in L^1_{loc}(\mathbb{R}^N)$ and γ_G vanishes at infinity,
- (c) γ_G is D_{λ} -homogeneous of degree $2 (\sum_{i=1}^n \sigma_i + \sum_{i=1}^p \sigma_i^*) = 2 Q$ and:

$$\Delta_{\mathsf{sub},\mathcal{G}}(\gamma_{\mathcal{G}}) = -\delta_{0}.$$

(d) There is C > 0 with: $C^{-1}h^{2-Q}(x,\xi) \le \gamma_G(x,\xi) \le Ch^{2-Q}(x,\xi)$.

Fundamental solution of $\mathcal L$

$$\Gamma_G(x,\xi;y,\eta) = \gamma_G((x,\xi)^{-1} \diamond (y,\eta)), \quad (x,\xi) \neq (y,\eta).$$

Theorem (S. Biagi, A. Bonfiglioli, 17)

Assume that $q = \sum_{j=1}^{n} \sigma_j > 2$ and $G = (\mathbb{R}^N, \diamond, D_\lambda) = as$ above.

(a) Then

$$\Gamma(x,y) := \int_{\mathbb{R}^p} \Gamma_G(x,0;y,\eta) d\eta \qquad (x \neq y)$$

is a fundamental solution for $\mathcal{L} = X_1^1 + \cdots + X_m^2$.

(b) There is a global estimate:

$$C^{-1} \int_{\mathbb{R}^p} h^{2-Q} ((x,0)^{-1} \diamond (y,\eta)) d\eta \le \Gamma(x,y) \le$$
$$\le C \int_{\mathbb{R}^p} h^{2-Q} ((x,0)^{-1} \diamond (y,\eta)) d\eta.$$

W. Bauer (Leibniz Universität Hannover) Fundamental solution of degenerate operators

Sept. 19-23, 2022

Fundamental solution of \mathcal{L} (continued)

Theorem (S. Biagi, A. Bonfiglioli, 17)

With the previous notations: $\Gamma(x,y)$ has the δ_{λ} -homogeneity:

Put:
$$\Gamma\Big(\delta_{\lambda}(x); \delta_{\lambda}(y)\Big) = \lambda^{2-q} \cdot \Gamma(x, y)$$
 where $\mathbb{R}^n \ni x \neq y, \lambda > 0$.

Moreover $\Gamma(x, y)$ has the following properties:

- (1) Symmetry: $\Gamma(x,y) = \Gamma(y,x)$ for all $x \neq y \in \mathbb{R}^n$,
- (2) $\Gamma(x,\cdot) = \Gamma(\cdot,x)$ is \mathcal{L} -harmonic on $\mathbb{R}^n \setminus \{x\}$,
- (3) $\Gamma(x,\cdot) = \Gamma(\cdot,x)$ vanishes at infinity uniformly on compact sets,
- (4) Outside the diagonal Diag = $\{(x,x) : x \in \mathbb{R}^n\}$ in $\mathbb{R}^n \times \mathbb{R}^n$:

$$\Gamma \in L^1_{\mathsf{loc}}(\mathbb{R}^n imes \mathbb{R}^n \setminus \mathsf{Diag}) \cap C^{\infty}(\mathbb{R}^n imes \mathbb{R}^n \setminus \mathsf{Diag}).$$

 ${\it N}$. Bauer $\,$ (Leibniz Universität Hannover $\,$ $\,$ Fundamental solution of degenerate operators

Sept. 19-23, 2022

Example

Consider the Grushin operator on \mathbb{R}^2 with dilation $\delta_{\lambda}(x_1, x_2) = (\lambda x_1, \lambda^2 x_2)$:

$$\mathcal{L} = X_1^2 + X_2^2$$
 where $X_1 = \partial_{x_1}$, $X_2 = x_1 \partial_{x_2}$.

• Carnot group: $G = (\mathbb{R}^3, \diamond, D_{\lambda})$ with

$$D_{\lambda}(x_1, x_2, \xi) = (\lambda x_1, \lambda^2 x_2, \lambda \xi)$$
 and $Q = 4$.

• Product on G:

$$(x_1, x_2, \xi) \diamond (y_1, y_2, \eta) = (x_1 + y_1, x_2 + y_2 + x_1 \eta, \xi + \eta).$$

ullet Liftings of $X_1 o Z_1=\partial_{x_1}$ and $X_2 o Z_2=x_1\partial_{x_2}+\partial_{\xi}$ and

$$\mathcal{L} = X_1^2 + X_2^2$$
 lifts to $\Delta_{\mathsf{sub}} = Z_1^2 + Z_2^2$.

W. Bauer (Leibniz Universität Hannover) Fundamental solution of degenerate operators

31 / 37

Example

• Fundamental solution of Δ_{sub} for $(x, \xi) \neq (0, 0)$:

$$\Gamma_{\Delta_{\text{sub}}}(x,\xi) = rac{c}{\sqrt{(x_1^2 + \xi^2)^2 + 16(x_2 - rac{1}{2}x_1\xi)^2}}.$$

Conclusion

The fundamental solution of \mathcal{L} is given by the fiber integral:

$$\Gamma(x_1, x_2; y_1, y_2) =$$

$$= c \int_{\mathbb{R}} \frac{d\eta}{\sqrt{((x_1 - y_1)^2 + \eta^2)^2 + 4(2x_2 - 2y_2 + \eta(x_1 + y_1))^2}}.$$

Higher step groups and Grushin type operators

Example: Consider the Engel group \mathcal{E}_4 as a matrix group

$$\mathcal{E}_4 = \left\{ \left(\begin{array}{cccc} 1 & x & \frac{x^2}{2} & z \\ 0 & 1 & x & w \\ 0 & 0 & 1 & y \\ 0 & 0 & 0 & 1 \end{array} \right) \; : \; x, y, w, z \in \mathbb{R} \; \right\} \subset \mathbb{R}^{4 \times 4}.$$

The corresponding Lie algebra ε_4 has the following bracket relations:

$$[X, Y] = W$$
 and $[X, W] = Z$.

A 3-step Carnot group

The Engel group \mathcal{E}_4 is the lowest dimensional Carnot group of step 3.

W. Bauer (Leibniz Universität Hannover) Fundamental solution of degenerate operators

Sept. 19-23, 2022

33 / 37

Calculate the left-invariant vector fields X and Y on \mathcal{E}_4 3.

$$X := \frac{\partial}{\partial x} - \frac{y}{2} \frac{\partial}{\partial w} + \left(\frac{w}{2} - \frac{xy}{12}\right) \frac{\partial}{\partial z},$$

$$Y := \frac{\partial}{\partial y} + \frac{x}{2} \frac{\partial}{\partial w} - \frac{x^2}{12} \frac{\partial}{\partial z}.$$

Lemma

The vector fields X and Y are skew-symmetric on \mathcal{E}_4 . They span a bracket generating distribution:

$$\mathcal{H} := \operatorname{span}\{X,Y\}.$$

Since W = [X, Y] and Z = [X, W] = [X, [X, Y]].

$$\Delta_{\mathsf{sub}}^{\mathcal{E}_4} = -\frac{1}{2} \Big\{ X^2 + Y^2 \Big\} = \mathsf{Sub-Laplacian}.$$

³Recall: one uses the Baker-Campbell-Hausdorff formula

Consider the sub-group

$$\mathcal{N} = \{ sX + tW : s, t \in \mathbb{R} \} \cong \mathbb{R}^2$$

of $\mathcal{E}_4 \cong \mathfrak{e}_4$. One obtains a fiber bundle

$$\rho: \mathcal{E}_4 \longrightarrow \mathcal{N} \backslash \mathcal{E}_4 \cong \mathbb{R}^2, \quad \text{where} \quad \rho(x,y,w,z) = \left(x,z + \frac{xw}{2} + \frac{yx^2}{6}\right).$$

Observation

The vector fields X and Y descend via $d\rho$ to $\mathcal{N} \setminus \mathcal{E}_4$. We obtain the Grushin type operator

$$\mathcal{G} = -d\rho(X)^2 - d\rho(Y)^2 = -\frac{\partial^2}{\partial u^2} + \frac{u^4}{4} \frac{\partial^2}{\partial v^2}.$$

W. Bauer (Leibniz Universität Hannover) Fundamental solution of degenerate operators

Sept. 19-23, 2022

35 / 37

Perform a partial Fourier transform with respect to the variable ν . We obtain a family of operators on $\mathbb R$

$$\mathcal{L}_{\eta} := -\frac{\partial^2}{\partial u^2} + \frac{u^4}{4}\eta^2 = "quartic oscillator" if $\eta \neq 0$.$$

These operators are elliptic if $\eta \neq 0$.

Calculating the heat kernel

ullet We could obtain the heat kernel of ${\cal G}$ from the heat kernel of $\Delta^{{\cal E}_4}_{
m sub}$ via a fiber integration:

More precisely: Let $\Phi: \mathcal{N} \times (\mathcal{N} \setminus \mathcal{E}_4) \longrightarrow \mathcal{E}_4$, be a trivialization of the bundle a then:

$$\mathcal{K}^{\mathcal{G}}ig(t,
ho(x),yig)=\int_{\mathbb{R}^2}\mathcal{K}^{\Delta^{\mathcal{E}_4}_{\mathrm{sub}}}ig(t,x,\Phi(u,y)ig)\;du.$$

^atrivialization means: $\rho \circ \Phi(x, y) = x$.

Thank you for your attention!

Distribution and horizontal curve

Front of SR geodesics at time T (picture by: U. Boscain, D. Barilari)

W. Bauer (Leibniz Universität Hannover) Fundamental solution of degenerate operators

Sept. 19-23, 2022

37 / 37