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Square-integrable representations

Let N be a connected, simply connected nilpotent Lie group.

A unitary representation (7, H~) of N is irreducible if {0} and H, are the only
closed m-invariant subspaces.

By Schur's lemma, there exists xz : Z(N) — T such that 7|z (v) = xz - I, -

An irreducible unitary representation (7, Hr) is square-integrable if there exists
g € Hx \ {0} such that

/N e m(08)F dunz() < o

where 11y,7 denotes Haar measure on N/Z.
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If 7 is square-integrable, there exists dr > 0, called the formal degree, such that
/ [(F,m(x)g) | diunyz(x) = d I I3, g, (1)
N/Z
for all f,g € H~. The relations (1) are called the orthogonality relations of .
For a (smooth) cross-section s : N/Z — N of the projection g : N — N/Z, i.e.,

gos =idy,z, define
Ti=mos:N/Z—UHx).

The pair (7, H-) is an irreducible, square-integrable projective representation of
N/Z, ie.,
T(y) = o(x,y)7(X)7(y), x,y € N/Z,

for a smooth function o : N/Z x N/Z — T, called the cocycle.

Throughout, 7 will simply be denoted by 7 and G := N/Z.
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Basic example: Heisenberg group

Example (Heisenberg group)

The group N = R?¥*! with group multiplication
(X7y,Z)(X,,y,,Z,) = (X+X/’y+ylaz+zl + X 'y,)

and center Z = {0} x {0} x R.

The quotient G = N/Z is given by G = R?? with usual vector addition.

Example (Schrédinger representation)
For £ # 0, the Schrodinger representation (¢, L2(R?)) of N = R??* is
Te(x, y, 2)f(t) = €7 e 2T (t — x), te R
lts formal degree d, = [£].
An associated projective representation of G = R?? is given by
Te(x, y)f(t) = e " (t—x), teRY,

for f € L?(R?). The associated cocycle is o((x, y), (x', y')) = e 2",
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Overcompleteness

By the orthogonality relations,

e dua) = 1, e,
forall f,g € Hr.
For g € Hx \ {0}, the orbit
m(G)g = {n(x)g : x € G}
is complete in Hr, i.e., span{m(x)g: x € G} = Hnx:
If (f,m(x)g) =0 for all x € G, then f = 0 by identity (1).

Moreover, it follows that 7(G)g is overcomplete, i.e., it remains complete after
removal of an arbitrary element.
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Coherent state subsystems

Any f € H, admits the integral formula
= [ (f7(0g)n(x)e duc(). )
G
where g € H is such that ||g[|3,, = dx.

Questions:

1. (Perelomov): Conditions on discrete subsets A C G such that
m(Ng ={r(A\g: A e A}

is complete in Hr, [Comm. Math. Phys., '72].

2. (Daubechies, Grossmann, Meyer): Discrete analogues of (2) of the form

f=> (f,m(\e)r(\g

AEN

for discrete A C G, [J. Math. Phys., '86].
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Frames and Riesz sequences

A countable family (7(A\)g)aen is a frame for H, if there exist A, B > 0 s.t.

Al < S 1(Fx(Ng)P < BlFIE,, forall fe M.
AEN

A Parseval frame is a frame (w(\)g)xen such that one can choose A= B =1.

A countable family (w(X)g)xen is a Riesz sequence if there exist A, B > 0 s.t.

Z ar(Ng

AEN

2
Allcllz < < B|lc|Z2, forall ce (A).

Hr

A Riesz sequence (m(A\)g)ren with bounds A= B =1 is orthonormal.
A Riesz basis is a Riesz sequence that is complete.

Fact: w(A)g is a Riesz basis iff 7(A)g is a non-overcomplete frame.
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Lattice orbits

A lattice in G is a discrete, co-compact subgroup I' < G.

Proposition

Let ' < G be a lattice. The following assertions are equivalent:
(i) There exists g € Hr such that 7(I")g is complete;

(ii) There exists g € Hr such that ©()g is a frame.

(i) = (i) is immediate; the converse is folklore, see, e.g., (Romero, V., '22).
If 7()g is a frame for H,, then

Ser i He = Mo, 2 Y (Fm(1)e)7(1)g
ver

is bounded and invertible. The system W(F)ng#ﬂg is a Parseval frame.



Necessary density conditions



Necessary density conditions

Theorem (Bekka, '04; Romero & V., '22)
Let I < G be a lattice. Then



Necessary density conditions

Theorem (Bekka, '04; Romero & V., '22)
Let I < G be a lattice. Then
(i) Ifm([)g is a frame for H, then vol(G/T)d, < 1.



Necessary density conditions

Theorem (Bekka, '04; Romero & V., '22)
Let I < G be a lattice. Then
(i) Ifm([)g is a frame for H, then vol(G/T)d, < 1.
(ii) Ifn(T)g is a Riesz sequence in H, then vol(G/T)d, > 1.



Necessary density conditions

Theorem (Bekka, '04; Romero & V., '22)
Let I < G be a lattice. Then
(i) Ifm([)g is a frame for H, then vol(G/T)d, < 1.
(ii) Ifn(T)g is a Riesz sequence in H, then vol(G/T)d, > 1.

Corollary
Let T < G be a lattice and g € Hr.
(i) If w(T)g is complete, then vol(G/T)d, < 1.
(ii) Ifn(T)g is a frame and vol(G/T)d, < 1, then 7(I")g is overcomplete.
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Proof of density theorem
Proof. (Romero & V., '22).
By the orthogonality relations,

4.l Ielfe, = [ I(F, 7GR o //Zunm ? due(x)
G/T

=/6/ S 1r () 7 (D) dpa().

yEr

The frame inequalities yield that Avol(G/T) < d;'||g||5,. < Bvol(G/T).

(i) It may be assumed that 7(I)g is a Parseval frame. Therefore,

vol(G/T) = d; t|lgll3e, < drt,

where it is used that |g]l3,, = [(g,8)1> < X__ g, 7(7)&)|* < llgl%. -

(if) It may be assumed that 7(I")g is an orthonormal system. Thus, ||g|l#, =1
and one can choose B = 1 by Bessel's inequality. Therefore,

dit = d g5, < vol(G/T),

as required. O
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Sufficient density conditions

Optimality of necessary density conditions:

Theorem (Bekka, '04; Enstad & V., ‘22)
Let I < G be a lattice.
(i) Ifvol(G/T)d, < 1, then there is g € Hr s.t. n(T")g is a frame.
(ii) Ifvol(G/T)dx > 1, then there is g € Hr s.t. w(I')g is a Riesz sequence.
In particular, if vol(G/T)d. = 1, then there is an orthonormal basis w(I')g.

Proof ingredients:
1. Hilbert modules over twisted group von Neumann algebras vN(I', o).
2. Z(N =rnz(G).
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Smooth lattice orbits

A vector g € Hr is smooth if x — 7(x)g is smooth; in notation, g € H;°.

A lattice ' < G and cocycle o : I x I — T satisfy Kleppner's condition if
Co i ={107™" s veT}

is infinite for o € T\ {e} satisfying o(70,7) = (7, 70) for all v € Z(7).!

Theorem (Bedos, Enstad, V., '22)

Let T < G be a lattice satisfying Kleppner’s condtion.
(i) Ifvol(G/T)dx < 1, then there is g € Hs° s.t. w([)g is a frame.
(ii) Ifvol(G/T)dr > 1, then there is g € H3® s.t. w([)g is a Riesz sequence.

Proof ingredients:
1. Completion of H3° into a Hilbert C*-module.

2. Strict comparison of projections in twisted C*-algebra C*(I', o).

1The projective Schrédinger representation 71 and I = az4 x bz satisfy Kleppner iff ab ¢ Q.
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Beurling densities

Denote by Br(x) a ball of radius R > 0 and center x € G that is induced by a
periodic metric on G, e.g., a word, Riemannian or Carnot-Carathéodory metric.

The lower and upper Beurling density of a set A C G are defined by
D™ (A) := liminf inf M
R—oo xe6  u(Br(e))

and
oy AN Be(x)
D7 (R) = limsupsup = Jrz 1))

respectively.

Example: If T < G is a lattice, then D™(I) = D™(I') = 1/ vol(G/T).
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Let Br be the collection of vectors g € H, such that

/G sup |(g, 7)) duc(x) < .

y€Bi(e)

Then B is norm dense in H,. In particular, any Garding vector
7@ = [ PR duc(x). 9 € CLG). he Hr,
G

defines an element in B;..

Theorem (Fiihr, Gréchenig, Haimi, Klotz, Romero, '16)

Let N\C G and g € Hx.

(i) If (N)g is a frame for Hr with g € By, then D~ (N\) > d.
(ii) I 7(N)g is a Riesz sequence in H., then DT (A) < d.

Extensions: Similar statements hold for unimodular solvable Lie groups with
possibly exponential growth; (Enstad, V., '22) and (Caspers, V. '22).
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Stability under dilations

The group G is called homogeneous if its Lie algebra g admits automorphisms
of the form

D, := expgy(In(r)A), r >0,

for some diagonalisible A : g — g with positive eigenvalues.

Automorphic dilations on G are defined by
6, = expg oD, o expg'.
for r > 0.

Theorem (Gréchenig, Romero, Rottensteiner, V., '20)

Let G be a homogeous nilpotent Lie group with dilations (6)r>o.
If g € H® and w(N\)g is a frame (resp. Riesz sequence), then there exists € > 0
such that, for all r € (1 —e,1 + ¢), the system

7(6:(A))g = (m(8-(X))&)ren
is a frame (resp. Riesz sequence).

Theorem is an adaption/extension of a corresponding theorem for G = R*? by
Grochenig, Ortega-Cerda and Romero [Adv. Math., '14].
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Theorem

Let G be a homogeneous group and let N C G. Suppose g € H.
(i) If (N)g is a frame for H, then D~ (N\) > dx.

(ii) If 7(A)g is a Riesz sequence in H, then D (A) < d.

Corollary: If 7(A)g is an orthonormal basis, then g ¢ H2° .2

Proof.

(i) Arguing by contradiction, assume 7(A)g is a frame with D~ (A) = dr. There
exists r > 1 such that 7(6,(A))g is a frame. Then

D™ (6,(N)) = r °D(A) < dx.
This contradicts the necessary density theorem D~ (d-(A)) > dx.

(ii) Similar. O

2Orthonormal bases m(A)g with g ¢ H>° do exist in the orbit of arbitrary nilpotent Lie groups
G; cf. Grochenig and Rottensteiner [J. Funct. Anal., '18] and Oussa [J. Funct. Anal., '19].
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Density conditions for complete systems

Recall: If 7(I)g is complete in H for a lattice [ < G, then

D (N =D (I > d,.

Failure: There exists g € L2(R) and A C R? with
D*(A)=0
such that m1(A)g = {2 g(- — A1) }aen is complete in L*(R).

Theorem (Wang; Appl. Comput. Harmon. Anal. '04)

Let T < R? be a lattice with D(A) > 1. For any € > 0, there exists g € L*(R)
and a subset N C I with

D (AN)=0 and D'(N)<e¢

such that w1 (A)g = {€¥™2 g(- — A1)} aen is complete in L*(R).
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Approximate lattices

A subset A C G is a Delone set if
1. There is a compact set K C G such that AK = G;
2. There is an open set U C G such that [ANxU| < 1 for all x € G.

Definition (Bjorklund, Hartnick; Duke Math. J. '18)
A Delone set A C G is an approximate lattice if
(al) The identity e € G is contained in A;

(a2) A is symmetric, i.e.,, A7t = A;

(a3) There exists finite F C G such that A> C FA.

A lattice A < G is an approximate lattice, but also suitable subsets thereof.?

Theorem (Enstad, V. '22)

Let A C G be an approximate lattice and F C G finite s.t. N> C FA.
If there exists g € H, such that w(\)g is complete in Hr, then

D~(A) = dx/|F|.

In particular, if N < G is a lattice, then D~ (N\) > d.

3 Approximate lattices might also exist in groups not admitting a lattice.
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Overcompleteness of smooth frames

By necessary density, a frame 7(A)g for H, with g € B, and
D™ (A) > dx

is overcomplete, i.e., remains complete after removal of an element.

Theorem (Caspers, V., '22)
Suppose w(\)g is a frame for H~ with g € HY and D~ (A) > d.. Then there
exists " C A with D™ (A") > 0 such that (m(\)g)xenn is a frame for Hr.

Consequence: Infinitely many elements from 7(A)g can be removed yet leave
a frame.
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Open problems

1. Strict density inequalities. For a non-homogeneous group G: If w(A)g is
a frame for H. with g € H3°, then

D™ (A) > d-.



Open problems

1. Strict density inequalities. For a non-homogeneous group G: If w(A)g is
a frame for H. with g € H3°, then

D™ (A) > d-.

2. Near the critical density. For every ¢ > 0 and g € H3°, there exists
A C G such that
D*(A) < dr+e

and 7(A)g is a frame for H3°.
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