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Square-integrable representations

Let N be a connected, simply connected nilpotent Lie group.

A unitary representation (π,Hπ) of N is irreducible if {0} and Hπ are the only
closed π-invariant subspaces.

By Schur’s lemma, there exists χZ : Z(N)→ T such that π|Z(N) = χZ · IHπ .

An irreducible unitary representation (π,Hπ) is square-integrable if there exists
g ∈ Hπ \ {0} such that

ˆ
N/Z
|〈g , π(x)g〉|2 dµN/Z (x) <∞,

where µN/Z denotes Haar measure on N/Z .
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Orthogonality relations

If π is square-integrable, there exists dπ > 0, called the formal degree, such that
ˆ

N/Z
|〈f , π(x)g〉|2 dµN/Z (x) = d−1

π ‖f ‖2
Hπ
‖g‖2

Hπ
(1)

for all f , g ∈ Hπ. The relations (1) are called the orthogonality relations of π.

For a (smooth) cross-section s : N/Z → N of the projection q : N → N/Z , i.e.,
q ◦ s = idN/Z , define

π := π ◦ s : N/Z → U(Hπ).

The pair (π,Hπ) is an irreducible, square-integrable projective representation of
N/Z , i.e.,

π(xy) = σ(x , y)π(x)π(y), x , y ∈ N/Z ,

for a smooth function σ : N/Z × N/Z → T, called the cocycle.

Throughout, π will simply be denoted by π and G := N/Z .
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Basic example: Heisenberg group

Example (Heisenberg group)

The group N = R2d+1 with group multiplication

(x , y , z)(x ′, y ′, z ′) = (x + x ′, y + y ′, z + z ′ + x · y ′)

and center Z = {0} × {0} × R.

The quotient G = N/Z is given by G = R2d with usual vector addition.

Example (Schrödinger representation)

For ξ 6= 0, the Schrödinger representation (πξ, L2(Rd )) of N = R2d+1 is

πξ(x , y , z)f (t) = e2πiξz e−2πiξy·t f (t − x), t ∈ Rd .

Its formal degree dπξ = |ξ|.

An associated projective representation of G = R2d is given by

πξ(x , y)f (t) = e−2πiξy·t f (t − x), t ∈ Rd ,

for f ∈ L2(Rd ). The associated cocycle is σ((x , y), (x ′, y ′)) = e−2πix·y′
.
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Overcompleteness

By the orthogonality relations,
ˆ

G
|〈f , π(x)g〉|2 dµG (x) = d−1

π ‖f ‖2
Hπ
‖g‖2

Hπ

for all f , g ∈ Hπ.

For g ∈ Hπ \ {0}, the orbit

π(G)g = {π(x)g : x ∈ G}

is complete in Hπ, i.e., span{π(x)g : x ∈ G} = Hπ:

If 〈f , π(x)g〉 = 0 for all x ∈ G , then f ≡ 0 by identity (1).

Moreover, it follows that π(G)g is overcomplete, i.e., it remains complete after
removal of an arbitrary element.
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Coherent state subsystems

Any f ∈ Hπ admits the integral formula

f =
ˆ

G
〈f , π(x)g〉π(x)g dµG (x), (2)

where g ∈ Hπ is such that ‖g‖2
Hπ

= dπ.

Questions:

1. (Perelomov): Conditions on discrete subsets Λ ⊆ G such that

π(Λ)g = {π(λ)g : λ ∈ Λ}

is complete in Hπ, [Comm. Math. Phys., ’72].
2. (Daubechies, Grossmann, Meyer): Discrete analogues of (2) of the form

f =
∑
λ∈Λ

〈f , π(λ)g〉π(λ)g

for discrete Λ ⊆ G , [J. Math. Phys., ’86].
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Frames and Riesz sequences

A countable family (π(λ)g)λ∈Λ is a frame for Hπ if there exist A,B > 0 s.t.

A‖f ‖2
Hπ
≤
∑
λ∈Λ

|〈f , π(λ)g〉|2 ≤ B‖f ‖2
Hπ
, for all f ∈ Hπ.

A Parseval frame is a frame (π(λ)g)λ∈Λ such that one can choose A = B = 1.

A countable family (π(λ)g)λ∈Λ is a Riesz sequence if there exist A,B > 0 s.t.

A‖c‖2
`2 ≤

∥∥∥∥∑
λ∈Λ

cλπ(λ)g
∥∥∥∥2

Hπ

≤ B‖c‖2
`2 , for all c ∈ `2(Λ).

A Riesz sequence (π(λ)g)λ∈Λ with bounds A = B = 1 is orthonormal.

A Riesz basis is a Riesz sequence that is complete.

Fact: π(Λ)g is a Riesz basis iff π(Λ)g is a non-overcomplete frame.
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Lattice orbits

A lattice in G is a discrete, co-compact subgroup Γ ≤ G .

Proposition

Let Γ ≤ G be a lattice. The following assertions are equivalent:
(i) There exists g ∈ Hπ such that π(Γ)g is complete;
(ii) There exists g ∈ Hπ such that π(Γ)g is a frame.

(ii)⇒ (i) is immediate; the converse is folklore, see, e.g., (Romero, V., ’22).

If π(Γ)g is a frame for Hπ, then

Sg,Γ : Hπ → Hπ, f 7→
∑
γ∈Γ

〈f , π(γ)g〉π(γ)g

is bounded and invertible. The system π(Γ)S−1/2
g,Γ g is a Parseval frame.
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Proof of density theorem
Proof. (Romero & V., ’22).

By the orthogonality relations,

d−1
π ‖f ‖2

Hπ
‖g‖2

Hπ
=
ˆ

G
|〈f , π(x)g〉|2 dµG (x) =

ˆ
G/Γ

∑
γ∈Γ

|〈f , π(xγ)g〉|2 dµG (x)

=
ˆ

G/Γ

∑
γ∈Γ

|〈π(x)∗f , π(γ)g〉|2 dµG (x).

The frame inequalities yield that A vol(G/Γ) ≤ d−1
π ‖g‖2

Hπ
≤ B vol(G/Γ).

(i) It may be assumed that π(Γ)g is a Parseval frame. Therefore,

vol(G/Γ) = d−1
π ‖g‖2

Hπ
≤ d−1

π ,

where it is used that ‖g‖4
Hπ

= |〈g , g〉|2 ≤
∑

γ
|〈g , π(γ)g〉|2 ≤ ‖g‖2

Hπ
.

(ii) It may be assumed that π(Γ)g is an orthonormal system. Thus, ‖g‖Hπ = 1
and one can choose B = 1 by Bessel’s inequality. Therefore,

d−1
π = d−1

π ‖g‖2
Hπ
≤ vol(G/Γ),

as required.
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Optimality of necessary density conditions:

Theorem (Bekka, ’04; Enstad & V., ‘22)

Let Γ ≤ G be a lattice.

(i) If vol(G/Γ)dπ ≤ 1, then there is g ∈ Hπ s.t. π(Γ)g is a frame.
(ii) If vol(G/Γ)dπ ≥ 1, then there is g ∈ Hπ s.t. π(Γ)g is a Riesz sequence.

In particular, if vol(G/Γ)dπ = 1, then there is an orthonormal basis π(Γ)g.

Proof ingredients:

1. Hilbert modules over twisted group von Neumann algebras vN(Γ, σ).
2. Z(Γ) = Γ ∩ Z(G).
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Smooth lattice orbits

A vector g ∈ Hπ is smooth if x 7→ π(x)g is smooth; in notation, g ∈ H∞π .

A lattice Γ ≤ G and cocycle σ : Γ× Γ→ T satisfy Kleppner’s condition if

Cγ0 := {γγ0γ
−1 : γ ∈ Γ}

is infinite for γ0 ∈ Γ \ {e} satisfying σ(γ0, γ) = σ(γ, γ0) for all γ ∈ Z(γ0).1

Theorem (Bedos, Enstad, V., ’22)

Let Γ ≤ G be a lattice satisfying Kleppner’s condtion.

(i) If vol(G/Γ)dπ < 1, then there is g ∈ H∞π s.t. π(Γ)g is a frame.
(ii) If vol(G/Γ)dπ > 1, then there is g ∈ H∞π s.t. π(Γ)g is a Riesz sequence.

Proof ingredients:

1. Completion of H∞π into a Hilbert C∗-module.
2. Strict comparison of projections in twisted C∗-algebra C∗(Γ, σ).

1The projective Schrödinger representation π1 and Γ = aZd × bZd satisfy Kleppner iff ab /∈ Q.
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1The projective Schrödinger representation π1 and Γ = aZd × bZd satisfy Kleppner iff ab /∈ Q.
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Beurling densities

Denote by BR (x) a ball of radius R > 0 and center x ∈ G that is induced by a
periodic metric on G , e.g., a word, Riemannian or Carnot-Carathéodory metric.

The lower and upper Beurling density of a set Λ ⊆ G are defined by

D−(Λ) := lim inf
R→∞

inf
x∈G

#(Λ ∩ BR (x))
µ(BR (e))

and
D+(Λ) := lim sup

R→∞
sup
x∈G

#(Λ ∩ BR (x))
µ(BR (e)) ,

respectively.

Example: If Γ ≤ G is a lattice, then D−(Γ) = D+(Γ) = 1/ vol(G/Γ).
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Necessary density conditions

Let Bπ be the collection of vectors g ∈ Hπ such that
ˆ

G
sup

y∈B1(e)
|〈g , π(xy)g〉|2 dµG (x) <∞.

Then Bπ is norm dense in Hπ. In particular, any Gårding vector

π(ϕ)h :=
ˆ

G
ϕ(x)π(x)h dµG (x), ϕ ∈ Cc (G), h ∈ Hπ,

defines an element in Bπ.

Theorem (Führ, Gröchenig, Haimi, Klotz, Romero, ’16)

Let Λ ⊆ G and g ∈ Hπ.

(i) If π(Λ)g is a frame for Hπ with g ∈ Bπ, then D−(Λ) ≥ dπ.
(ii) If π(Λ)g is a Riesz sequence in Hπ, then D+(Λ) ≤ dπ.

Extensions: Similar statements hold for unimodular solvable Lie groups with
possibly exponential growth; (Enstad, V., ’22) and (Caspers, V. ’22).
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Stability under dilations

The group G is called homogeneous if its Lie algebra g admits automorphisms
of the form

Dr := expGL(ln(r)A), r > 0,

for some diagonalisible A : g→ g with positive eigenvalues.

Automorphic dilations on G are defined by

δr := expG ◦Dr ◦ exp−1
G .

for r > 0.

Theorem (Gröchenig, Romero, Rottensteiner, V., ’20)

Let G be a homogeous nilpotent Lie group with dilations (δr )r>0.
If g ∈ H∞π and π(Λ)g is a frame (resp. Riesz sequence), then there exists ε > 0
such that, for all r ∈ (1− ε, 1 + ε), the system

π(δr (Λ))g = (π(δr (λ))g)λ∈Λ

is a frame (resp. Riesz sequence).

Theorem is an adaption/extension of a corresponding theorem for G = R2d by
Gröchenig, Ortega-Cerdà and Romero [Adv. Math., ’14].
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Gröchenig, Ortega-Cerdà and Romero [Adv. Math., ’14].



Stability under dilations

The group G is called homogeneous if its Lie algebra g admits automorphisms
of the form

Dr := expGL(ln(r)A), r > 0,

for some diagonalisible A : g→ g with positive eigenvalues.

Automorphic dilations on G are defined by

δr := expG ◦Dr ◦ exp−1
G .

for r > 0.
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Strict density inequalities

Theorem
Let G be a homogeneous group and let Λ ⊆ G. Suppose g ∈ H∞π .

(i) If π(Λ)g is a frame for Hπ, then D−(Λ) > dπ.
(ii) If π(Λ)g is a Riesz sequence in Hπ, then D+(Λ) < dπ.

Corollary: If π(Λ)g is an orthonormal basis, then g /∈ H∞π .2

Proof.

(i) Arguing by contradiction, assume π(Λ)g is a frame with D−(Λ) = dπ. There
exists r > 1 such that π(δr (Λ))g is a frame. Then

D−(δr (Λ)) = r−QD−(Λ) < dπ.

This contradicts the necessary density theorem D−(δr (Λ)) ≥ dπ.

(ii) Similar.

2Orthonormal bases π(Λ)g with g /∈ H∞
π do exist in the orbit of arbitrary nilpotent Lie groups

G; cf. Gröchenig and Rottensteiner [J. Funct. Anal., ’18] and Oussa [J. Funct. Anal., ’19].
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Density conditions for complete systems

Recall: If π(Γ)g is complete in Hπ for a lattice Γ ≤ G , then

D+(Γ) = D−(Γ) ≥ dπ.

Failure: There exists g ∈ L2(R) and Λ ⊆ R2 with

D+(Λ) = 0

such that π1(Λ)g = {e2πiλ2·g(· − λ1)}λ∈Λ is complete in L2(R).

Theorem (Wang; Appl. Comput. Harmon. Anal. ’04)

Let Γ ≤ R2 be a lattice with D(Λ) > 1. For any ε > 0, there exists g ∈ L2(R)
and a subset Λ ⊆ Γ with

D−(Λ) = 0 and D+(Λ) < ε

such that π1(Λ)g = {e2πiλ2·g(· − λ1)}λ∈Λ is complete in L2(R).
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Approximate lattices

A subset Λ ⊆ G is a Delone set if
1. There is a compact set K ⊆ G such that ΛK = G ;
2. There is an open set U ⊆ G such that |Λ ∩ xU| ≤ 1 for all x ∈ G .

Definition (Björklund, Hartnick; Duke Math. J. ’18)

A Delone set Λ ⊆ G is an approximate lattice if

(a1) The identity e ∈ G is contained in Λ;
(a2) Λ is symmetric, i.e., Λ−1 = Λ;
(a3) There exists finite F ⊆ G such that Λ2 ⊆ F Λ.

A lattice Λ ≤ G is an approximate lattice, but also suitable subsets thereof.3

Theorem (Enstad, V. ’22)

Let Λ ⊆ G be an approximate lattice and F ⊆ G finite s.t. Λ2 ⊆ F Λ.

If there exists g ∈ Hπ such that π(Λ)g is complete in Hπ, then

D−(Λ) ≥ dπ/|F |.

In particular, if Λ ≤ G is a lattice, then D−(Λ) ≥ dπ.

3Approximate lattices might also exist in groups not admitting a lattice.
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Overcompleteness of smooth frames

By necessary density, a frame π(Λ)g for Hπ with g ∈ Bπ and

D−(Λ) > dπ

is overcomplete, i.e., remains complete after removal of an element.

Theorem (Caspers, V., ’22)

Suppose π(Λ)g is a frame for Hπ with g ∈ H∞π and D−(Λ) > dπ. Then there
exists Λ′ ⊆ Λ with D−(Λ′) > 0 such that (π(λ)g)λ∈Λ\Λ′ is a frame for Hπ.

Consequence: Infinitely many elements from π(Λ)g can be removed yet leave
a frame.
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Open problems

1. Strict density inequalities. For a non-homogeneous group G : If π(Λ)g is
a frame for Hπ with g ∈ H∞π , then

D−(Λ) > dπ.

2. Near the critical density. For every ε > 0 and g ∈ H∞π , there exists
Λ ⊆ G such that

D+(Λ) ≤ dπ + ε

and π(Λ)g is a frame for H∞π .
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Führ, Gröchenig, Haimi, Klotz, Romero. Density of sampling and
interpolation in reproducing kernel Hilbert spaces. J. Lond. Math. Soc., II.
Ser., 96(3):663-686, 2017
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