Smooth frames in the orbit of a square-integrable representation of a nilpotent Lie group

Jordy Timo van Velthoven

20 September, 2022

Outline

I. Background and motivation

- II. Density theorems for lattices
- III. Non-uniform density theorems
- IV. Complete systems and overcomplete frames
- V. Open problems

Let N be a connected, simply connected nilpotent Lie group.

Let N be a connected, simply connected nilpotent Lie group.

A unitary representation (π, \mathcal{H}_{π}) of N is *irreducible* if $\{0\}$ and \mathcal{H}_{π} are the only closed π -invariant subspaces.

Let N be a connected, simply connected nilpotent Lie group.

A unitary representation (π, \mathcal{H}_{π}) of N is *irreducible* if $\{0\}$ and \mathcal{H}_{π} are the only closed π -invariant subspaces.

By Schur's lemma, there exists $\chi_Z : Z(N) \to \mathbb{T}$ such that $\pi|_{Z(N)} = \chi_Z \cdot I_{\mathcal{H}_{\pi}}$.

Let N be a connected, simply connected nilpotent Lie group.

A unitary representation (π, \mathcal{H}_{π}) of N is *irreducible* if $\{0\}$ and \mathcal{H}_{π} are the only closed π -invariant subspaces.

By Schur's lemma, there exists $\chi_Z : Z(N) \to \mathbb{T}$ such that $\pi|_{Z(N)} = \chi_Z \cdot I_{\mathcal{H}_{\pi}}$.

An irreducible unitary representation (π, \mathcal{H}_{π}) is *square-integrable* if there exists $g \in \mathcal{H}_{\pi} \setminus \{0\}$ such that

$$\int_{N/Z} |\langle g, \pi(x)g\rangle|^2 \ d\mu_{N/Z}(x) < \infty,$$

where $\mu_{N/Z}$ denotes Haar measure on N/Z.

If π is square-integrable, there exists $d_{\pi} > 0$, called the *formal degree*, such that

$$\int_{N/Z} |\langle f, \pi(x)g \rangle|^2 \ d\mu_{N/Z}(x) = d_{\pi}^{-1} \|f\|_{\mathcal{H}_{\pi}}^2 \|g\|_{\mathcal{H}_{\pi}}^2$$
(1)

for all $f, g \in \mathcal{H}_{\pi}$. The relations (1) are called the *orthogonality relations* of π .

If π is square-integrable, there exists $d_{\pi} > 0$, called the *formal degree*, such that

$$\int_{N/Z} |\langle f, \pi(x)g \rangle|^2 \, d\mu_{N/Z}(x) = d_{\pi}^{-1} \|f\|_{\mathcal{H}_{\pi}}^2 \|g\|_{\mathcal{H}_{\pi}}^2 \tag{1}$$

for all $f, g \in \mathcal{H}_{\pi}$. The relations (1) are called the *orthogonality relations* of π .

For a (smooth) cross-section $s: N/Z \rightarrow N$ of the projection $q: N \rightarrow N/Z$, i.e., $q \circ s = id_{N/Z}$, define

 $\overline{\pi} := \pi \circ s : N/Z \to \mathcal{U}(\mathcal{H}_{\pi}).$

If π is square-integrable, there exists $d_{\pi} > 0$, called the *formal degree*, such that

$$\int_{N/Z} |\langle f, \pi(x)g \rangle|^2 \, d\mu_{N/Z}(x) = d_{\pi}^{-1} \|f\|_{\mathcal{H}_{\pi}}^2 \|g\|_{\mathcal{H}_{\pi}}^2 \tag{1}$$

for all $f, g \in \mathcal{H}_{\pi}$. The relations (1) are called the *orthogonality relations* of π .

For a (smooth) cross-section $s: N/Z \to N$ of the projection $q: N \to N/Z$, i.e., $q \circ s = \mathrm{id}_{N/Z}$, define

$$\overline{\pi} := \pi \circ s : N/Z \to \mathcal{U}(\mathcal{H}_{\pi}).$$

The pair $(\overline{\pi}, \mathcal{H}_{\pi})$ is an irreducible, square-integrable *projective* representation of N/Z, i.e.,

$$\overline{\pi}(xy) = \sigma(x,y)\overline{\pi}(x)\overline{\pi}(y), \quad x,y \in N/Z,$$

for a smooth function $\sigma: N/Z \times N/Z \rightarrow \mathbb{T}$, called the *cocycle*.

If π is square-integrable, there exists $d_{\pi} > 0$, called the *formal degree*, such that

$$\int_{N/Z} |\langle f, \pi(x)g \rangle|^2 \, d\mu_{N/Z}(x) = d_{\pi}^{-1} \|f\|_{\mathcal{H}_{\pi}}^2 \|g\|_{\mathcal{H}_{\pi}}^2 \tag{1}$$

for all $f, g \in \mathcal{H}_{\pi}$. The relations (1) are called the *orthogonality relations* of π .

For a (smooth) cross-section $s: N/Z \to N$ of the projection $q: N \to N/Z$, i.e., $q \circ s = \mathrm{id}_{N/Z}$, define

$$\overline{\pi} := \pi \circ s : N/Z \to \mathcal{U}(\mathcal{H}_{\pi}).$$

The pair $(\overline{\pi}, \mathcal{H}_{\pi})$ is an irreducible, square-integrable *projective* representation of N/Z, i.e.,

$$\overline{\pi}(xy) = \sigma(x,y)\overline{\pi}(x)\overline{\pi}(y), \quad x,y \in N/Z,$$

for a smooth function $\sigma: N/Z \times N/Z \rightarrow \mathbb{T}$, called the *cocycle*.

Throughout, $\overline{\pi}$ will simply be denoted by π and G := N/Z.

Example (Heisenberg group)

The group $N = \mathbb{R}^{2d+1}$ with group multiplication

$$(x, y, z)(x', y', z') = (x + x', y + y', z + z' + x \cdot y')$$

and center $Z = \{0\} \times \{0\} \times \mathbb{R}$.

Example (Heisenberg group)

The group $N = \mathbb{R}^{2d+1}$ with group multiplication

$$(x, y, z)(x', y', z') = (x + x', y + y', z + z' + x \cdot y')$$

and center $Z = \{0\} \times \{0\} \times \mathbb{R}$.

The quotient G = N/Z is given by $G = \mathbb{R}^{2d}$ with usual vector addition.

Example (Heisenberg group)

The group $N = \mathbb{R}^{2d+1}$ with group multiplication

$$(x, y, z)(x', y', z') = (x + x', y + y', z + z' + x \cdot y')$$

and center $Z = \{0\} \times \{0\} \times \mathbb{R}$.

The quotient G = N/Z is given by $G = \mathbb{R}^{2d}$ with usual vector addition.

Example (Schrödinger representation) For $\xi \neq 0$, the Schrödinger representation $(\pi_{\xi}, L^2(\mathbb{R}^d))$ of $N = \mathbb{R}^{2d+1}$ is $\pi_{\xi}(x, y, z)f(t) = e^{2\pi i \xi z} e^{-2\pi i \xi y \cdot t} f(t - x), \quad t \in \mathbb{R}^d.$

Its formal degree $d_{\pi_{\xi}} = |\xi|$.

Example (Heisenberg group)

The group $N = \mathbb{R}^{2d+1}$ with group multiplication

$$(x, y, z)(x', y', z') = (x + x', y + y', z + z' + x \cdot y')$$

and center $Z = \{0\} \times \{0\} \times \mathbb{R}$.

The quotient G = N/Z is given by $G = \mathbb{R}^{2d}$ with usual vector addition.

Example (Schrödinger representation) For $\xi \neq 0$, the Schrödinger representation $(\pi_{\xi}, L^2(\mathbb{R}^d))$ of $N = \mathbb{R}^{2d+1}$ is $\pi_{\xi}(x, y, z)f(t) = e^{2\pi i\xi z}e^{-2\pi i\xi y \cdot t}f(t-x), \quad t \in \mathbb{R}^d.$

Its formal degree $d_{\pi_{\xi}} = |\xi|$.

An associated projective representation of $G = \mathbb{R}^{2d}$ is given by

$$\overline{\pi}_{\xi}(x,y)f(t) = e^{-2\pi i\xi y \cdot t}f(t-x), \quad t \in \mathbb{R}^d,$$

for $f \in L^2(\mathbb{R}^d)$. The associated cocycle is $\sigma((x, y), (x', y')) = e^{-2\pi i x \cdot y'}$.

By the orthogonality relations,

$$\int_{G} |\langle f, \pi(x)g \rangle|^2 \ d\mu_G(x) = d_{\pi}^{-1} \|f\|_{\mathcal{H}_{\pi}}^2 \|g\|_{\mathcal{H}_{\pi}}^2$$

for all $f, g \in \mathcal{H}_{\pi}$.

By the orthogonality relations,

$$\int_{\mathcal{G}} \left| \langle f, \pi(x)g \rangle \right|^2 d\mu_{\mathcal{G}}(x) = d_{\pi}^{-1} \|f\|_{\mathcal{H}_{\pi}}^2 \|g\|_{\mathcal{H}_{\pi}}^2$$

for all $f, g \in \mathcal{H}_{\pi}$.

For $g \in \mathcal{H}_{\pi} \setminus \{0\}$, the orbit

$$\pi(G)g = \{\pi(x)g : x \in G\}$$

is complete in \mathcal{H}_{π} , i.e., $\overline{\text{span}}\{\pi(x)g: x \in G\} = \mathcal{H}_{\pi}$:

If $\langle f, \pi(x)g \rangle = 0$ for all $x \in G$, then $f \equiv 0$ by identity (1).

By the orthogonality relations,

$$\int_{\mathcal{G}} \left| \langle f, \pi(x)g \rangle \right|^2 d\mu_{\mathcal{G}}(x) = d_{\pi}^{-1} \|f\|_{\mathcal{H}_{\pi}}^2 \|g\|_{\mathcal{H}_{\pi}}^2$$

for all $f, g \in \mathcal{H}_{\pi}$.

For $g \in \mathcal{H}_{\pi} \setminus \{0\}$, the orbit

$$\pi(G)g = \{\pi(x)g : x \in G\}$$

is complete in \mathcal{H}_{π} , i.e., $\overline{\text{span}}\{\pi(x)g: x \in G\} = \mathcal{H}_{\pi}$:

If $\langle f, \pi(x)g \rangle = 0$ for all $x \in G$, then $f \equiv 0$ by identity (1).

Moreover, it follows that $\pi(G)g$ is *overcomplete*, i.e., it remains complete after removal of an arbitrary element.

Any $f \in \mathcal{H}_{\pi}$ admits the integral formula

$$f = \int_{\mathcal{G}} \langle f, \pi(x)g \rangle \pi(x)g \ d\mu_{\mathcal{G}}(x), \tag{2}$$

where $g \in \mathcal{H}_{\pi}$ is such that $\|g\|^2_{\mathcal{H}_{\pi}} = d_{\pi}.$

Any $f \in \mathcal{H}_{\pi}$ admits the integral formula

$$f = \int_{G} \langle f, \pi(x)g \rangle \pi(x)g \ d\mu_{G}(x), \tag{2}$$

where $g \in \mathcal{H}_{\pi}$ is such that $\|g\|^2_{\mathcal{H}_{\pi}} = d_{\pi}$.

Questions:

Any $f \in \mathcal{H}_{\pi}$ admits the integral formula

$$f = \int_{G} \langle f, \pi(x)g \rangle \pi(x)g \ d\mu_{G}(x), \tag{2}$$

where $g \in \mathcal{H}_{\pi}$ is such that $\|g\|_{\mathcal{H}_{\pi}}^2 = d_{\pi}$.

Questions:

1. (Perelomov): Conditions on discrete subsets $\Lambda \subseteq G$ such that

$$\pi(\Lambda)g = \{\pi(\lambda)g : \lambda \in \Lambda\}$$

is complete in \mathcal{H}_{π} , [Comm. Math. Phys., '72].

Any $f \in \mathcal{H}_{\pi}$ admits the integral formula

$$f = \int_{G} \langle f, \pi(x)g \rangle \pi(x)g \ d\mu_{G}(x), \tag{2}$$

where $g \in \mathcal{H}_{\pi}$ is such that $\|g\|_{\mathcal{H}_{\pi}}^2 = d_{\pi}$.

Questions:

1. (Perelomov): Conditions on discrete subsets $\Lambda \subseteq G$ such that

$$\pi(\Lambda)g = \{\pi(\lambda)g : \lambda \in \Lambda\}$$

is complete in \mathcal{H}_{π} , [Comm. Math. Phys., '72].

2. (Daubechies, Grossmann, Meyer): Discrete analogues of (2) of the form

$$f = \sum_{\lambda \in \Lambda} \langle f, \pi(\lambda) g
angle \pi(\lambda) g$$

for discrete $\Lambda \subseteq G$, [J. Math. Phys., '86].

A countable family $(\pi(\lambda)g)_{\lambda\in\Lambda}$ is a *frame* for \mathcal{H}_{π} if there exist A, B > 0 s.t.

$$A\|f\|^2_{\mathcal{H}_\pi} \leq \sum_{\lambda \in \Lambda} |\langle f, \pi(\lambda)g\rangle|^2 \leq B\|f\|^2_{\mathcal{H}_\pi}, \quad \text{for all} \quad f \in \mathcal{H}_\pi$$

A Parseval frame is a frame $(\pi(\lambda)g)_{\lambda \in \Lambda}$ such that one can choose A = B = 1.

A countable family $(\pi(\lambda)g)_{\lambda \in \Lambda}$ is a *frame* for \mathcal{H}_{π} if there exist A, B > 0 s.t.

$$A\|f\|^2_{\mathcal{H}_{\pi}} \leq \sum_{\lambda \in \Lambda} |\langle f, \pi(\lambda)g\rangle|^2 \leq B\|f\|^2_{\mathcal{H}_{\pi}}, \quad \text{for all} \quad f \in \mathcal{H}_{\pi}$$

A Parseval frame is a frame $(\pi(\lambda)g)_{\lambda \in \Lambda}$ such that one can choose A = B = 1.

A countable family $(\pi(\lambda)g)_{\lambda\in\Lambda}$ is a *Riesz sequence* if there exist A, B > 0 s.t.

$$A\|c\|_{\ell^2}^2 \leq \bigg\|\sum_{\lambda\in\Lambda}c_\lambda\pi(\lambda)g\bigg\|_{\mathcal{H}_\pi}^2 \leq B\|c\|_{\ell^2}^2, \quad \text{for all} \quad c\in\ell^2(\Lambda).$$

A Riesz sequence $(\pi(\lambda)g)_{\lambda \in \Lambda}$ with bounds A = B = 1 is orthonormal.

A countable family $(\pi(\lambda)g)_{\lambda \in \Lambda}$ is a *frame* for \mathcal{H}_{π} if there exist A, B > 0 s.t.

$$A\|f\|^2_{\mathcal{H}_\pi} \leq \sum_{\lambda \in \Lambda} |\langle f, \pi(\lambda)g\rangle|^2 \leq B\|f\|^2_{\mathcal{H}_\pi}, \quad \text{for all} \quad f \in \mathcal{H}_\pi$$

A Parseval frame is a frame $(\pi(\lambda)g)_{\lambda \in \Lambda}$ such that one can choose A = B = 1.

A countable family $(\pi(\lambda)g)_{\lambda\in\Lambda}$ is a *Riesz sequence* if there exist A, B > 0 s.t.

$$A\|c\|_{\ell^2}^2 \leq \bigg\|\sum_{\lambda\in\Lambda} c_\lambda \pi(\lambda)g\bigg\|_{\mathcal{H}_\pi}^2 \leq B\|c\|_{\ell^2}^2, \quad \text{for all} \quad c\in\ell^2(\Lambda).$$

A Riesz sequence $(\pi(\lambda)g)_{\lambda\in\Lambda}$ with bounds A = B = 1 is orthonormal.

A Riesz basis is a Riesz sequence that is complete.

A countable family $(\pi(\lambda)g)_{\lambda\in\Lambda}$ is a *frame* for \mathcal{H}_{π} if there exist A, B > 0 s.t.

$$A\|f\|^2_{\mathcal{H}_\pi} \leq \sum_{\lambda \in \Lambda} |\langle f, \pi(\lambda)g\rangle|^2 \leq B\|f\|^2_{\mathcal{H}_\pi}, \quad \text{for all} \quad f \in \mathcal{H}_\pi.$$

A Parseval frame is a frame $(\pi(\lambda)g)_{\lambda \in \Lambda}$ such that one can choose A = B = 1.

A countable family $(\pi(\lambda)g)_{\lambda\in\Lambda}$ is a *Riesz sequence* if there exist A, B > 0 s.t.

$$A\|c\|_{\ell^2}^2 \leq \bigg\|\sum_{\lambda\in\Lambda} c_\lambda \pi(\lambda)g\bigg\|_{\mathcal{H}_\pi}^2 \leq B\|c\|_{\ell^2}^2, \quad \text{for all} \quad c\in\ell^2(\Lambda).$$

A Riesz sequence $(\pi(\lambda)g)_{\lambda \in \Lambda}$ with bounds A = B = 1 is orthonormal.

A Riesz basis is a Riesz sequence that is complete.

Fact: $\pi(\Lambda)g$ is a Riesz basis iff $\pi(\Lambda)g$ is a non-overcomplete frame.

Outline

I. Background and motivation

II. Density theorems for lattices

III. Non-uniform density theorems

IV. Complete systems and overcomplete frames

V. Open problems

A *lattice* in G is a discrete, co-compact subgroup $\Gamma \leq G$.

A *lattice* in G is a discrete, co-compact subgroup $\Gamma \leq G$.

Proposition

Let $\Gamma \leq G$ be a lattice. The following assertions are equivalent:

- (i) There exists $g \in \mathcal{H}_{\pi}$ such that $\pi(\Gamma)g$ is complete;
- (ii) There exists $g \in \mathcal{H}_{\pi}$ such that $\pi(\Gamma)g$ is a frame.

A *lattice* in G is a discrete, co-compact subgroup $\Gamma \leq G$.

Proposition

Let $\Gamma \leq G$ be a lattice. The following assertions are equivalent:

- (i) There exists $g \in \mathcal{H}_{\pi}$ such that $\pi(\Gamma)g$ is complete;
- (ii) There exists $g \in \mathcal{H}_{\pi}$ such that $\pi(\Gamma)g$ is a frame.

(ii) \Rightarrow (i) is immediate; the converse is folklore, see, e.g., (Romero, V., '22).
Lattice orbits

A *lattice* in G is a discrete, co-compact subgroup $\Gamma \leq G$.

Proposition

Let $\Gamma \leq G$ be a lattice. The following assertions are equivalent:

- (i) There exists $g \in \mathcal{H}_{\pi}$ such that $\pi(\Gamma)g$ is complete;
- (ii) There exists $g \in \mathcal{H}_{\pi}$ such that $\pi(\Gamma)g$ is a frame.

(ii) \Rightarrow (i) is immediate; the converse is folklore, see, e.g., (Romero, V., '22).

If $\pi(\Gamma)g$ is a frame for \mathcal{H}_{π} , then

$$S_{g,\Gamma}:\mathcal{H}_{\pi}
ightarrow\mathcal{H}_{\pi}, \hspace{1em} f\mapsto \sum_{\gamma\in \Gamma}\langle f,\pi(\gamma)g
angle \pi(\gamma)g
angle$$

is bounded and invertible. The system $\pi(\Gamma)S_{e,\Gamma}^{-1/2}g$ is a Parseval frame.

Theorem (Bekka, '04; Romero & V., '22)

Let $\Gamma \leq G$ be a lattice. Then

Theorem (Bekka, '04; Romero & V., '22)

Let $\Gamma \leq G$ be a lattice. Then

(i) If $\pi(\Gamma)g$ is a frame for \mathcal{H}_{π} , then $\operatorname{vol}(G/\Gamma)d_{\pi} \leq 1$.

Theorem (Bekka, '04; Romero & V., '22)

Let $\Gamma \leq G$ be a lattice. Then

(i) If $\pi(\Gamma)g$ is a frame for \mathcal{H}_{π} , then $\operatorname{vol}(G/\Gamma)d_{\pi} \leq 1$.

(ii) If $\pi(\Gamma)g$ is a Riesz sequence in \mathcal{H}_{π} , then $\operatorname{vol}(G/\Gamma)d_{\pi} \geq 1$.

Theorem (Bekka, '04; Romero & V., '22) Let $\Gamma \leq G$ be a lattice. Then (i) If $\pi(\Gamma)g$ is a frame for \mathcal{H}_{π} , then $\operatorname{vol}(G/\Gamma)d_{\pi} \leq 1$. (ii) If $\pi(\Gamma)g$ is a Riesz sequence in \mathcal{H}_{π} , then $\operatorname{vol}(G/\Gamma)d_{\pi} \geq 1$.

Corollary

Let $\Gamma \leq G$ be a lattice and $g \in \mathcal{H}_{\pi}$. (i) If $\pi(\Gamma)g$ is complete, then $\operatorname{vol}(G/\Gamma)d_{\pi} \leq 1$. (ii) If $\pi(\Gamma)g$ is a frame and $\operatorname{vol}(G/\Gamma)d_{\pi} < 1$, then $\pi(\Gamma)g$ is overcomplete.

Proof. (Romero & V., '22).

Proof. (Romero & V., '22).

By the orthogonality relations,

$$\begin{split} d_{\pi}^{-1} \|f\|_{\mathcal{H}_{\pi}}^{2} \|g\|_{\mathcal{H}_{\pi}}^{2} &= \int_{G} |\langle f, \pi(x)g\rangle|^{2} \ d\mu_{G}(x) = \int_{G/\Gamma} \sum_{\gamma \in \Gamma} |\langle f, \pi(x\gamma)g\rangle|^{2} \ d\mu_{G}(x) \\ &= \int_{G/\Gamma} \sum_{\gamma \in \Gamma} |\langle \pi(x)^{*}f, \pi(\gamma)g\rangle|^{2} \ d\mu_{G}(x). \end{split}$$

Proof. (Romero & V., '22).

By the orthogonality relations,

$$\begin{split} d_{\pi}^{-1} \|f\|_{\mathcal{H}_{\pi}}^{2} \|g\|_{\mathcal{H}_{\pi}}^{2} &= \int_{G} |\langle f, \pi(x)g\rangle|^{2} \ d\mu_{G}(x) = \int_{G/\Gamma} \sum_{\gamma \in \Gamma} |\langle f, \pi(x\gamma)g\rangle|^{2} \ d\mu_{G}(x) \\ &= \int_{G/\Gamma} \sum_{\gamma \in \Gamma} |\langle \pi(x)^{*}f, \pi(\gamma)g\rangle|^{2} \ d\mu_{G}(x). \end{split}$$

The frame inequalities yield that $A \operatorname{vol}(G/\Gamma) \leq d_{\pi}^{-1} \|g\|_{\mathcal{H}_{\pi}}^2 \leq B \operatorname{vol}(G/\Gamma)$.

Proof. (Romero & V., '22).

By the orthogonality relations,

$$\begin{split} d_{\pi}^{-1} \|f\|_{\mathcal{H}_{\pi}}^{2} \|g\|_{\mathcal{H}_{\pi}}^{2} &= \int_{G} |\langle f, \pi(x)g\rangle|^{2} \ d\mu_{G}(x) = \int_{G/\Gamma} \sum_{\gamma \in \Gamma} |\langle f, \pi(x\gamma)g\rangle|^{2} \ d\mu_{G}(x) \\ &= \int_{G/\Gamma} \sum_{\gamma \in \Gamma} |\langle \pi(x)^{*}f, \pi(\gamma)g\rangle|^{2} \ d\mu_{G}(x). \end{split}$$

The frame inequalities yield that $A \operatorname{vol}(G/\Gamma) \leq d_{\pi}^{-1} \|g\|_{\mathcal{H}_{\pi}}^2 \leq B \operatorname{vol}(G/\Gamma)$.

(i) It may be assumed that $\pi(\Gamma)g$ is a Parseval frame. Therefore,

$$\operatorname{vol}(G/\Gamma) = d_{\pi}^{-1} \|g\|_{\mathcal{H}_{\pi}}^2 \leq d_{\pi}^{-1},$$

where it is used that $\|g\|_{\mathcal{H}_{\pi}}^4 = |\langle g,g \rangle|^2 \leq \sum_{\gamma} |\langle g,\pi(\gamma)g \rangle|^2 \leq \|g\|_{\mathcal{H}_{\pi}}^2.$

Proof. (Romero & V., '22).

By the orthogonality relations,

$$\begin{split} d_{\pi}^{-1} \|f\|_{\mathcal{H}_{\pi}}^{2} \|g\|_{\mathcal{H}_{\pi}}^{2} &= \int_{G} |\langle f, \pi(x)g \rangle|^{2} \ d\mu_{G}(x) = \int_{G/\Gamma} \sum_{\gamma \in \Gamma} |\langle f, \pi(x\gamma)g \rangle|^{2} \ d\mu_{G}(x) \\ &= \int_{G/\Gamma} \sum_{\gamma \in \Gamma} |\langle \pi(x)^{*}f, \pi(\gamma)g \rangle|^{2} \ d\mu_{G}(x). \end{split}$$

The frame inequalities yield that $A \operatorname{vol}(G/\Gamma) \leq d_{\pi}^{-1} \|g\|_{\mathcal{H}_{\pi}}^2 \leq B \operatorname{vol}(G/\Gamma)$.

(i) It may be assumed that $\pi(\Gamma)g$ is a Parseval frame. Therefore,

$$\operatorname{vol}(G/\Gamma) = d_{\pi}^{-1} \|g\|_{\mathcal{H}_{\pi}}^2 \leq d_{\pi}^{-1},$$

where it is used that $\|g\|_{\mathcal{H}_{\pi}}^4 = |\langle g,g \rangle|^2 \leq \sum_{\gamma} |\langle g,\pi(\gamma)g \rangle|^2 \leq \|g\|_{\mathcal{H}_{\pi}}^2.$

(ii) It may be assumed that $\pi(\Gamma)g$ is an orthonormal system. Thus, $||g||_{\mathcal{H}_{\pi}} = 1$ and one can choose B = 1 by Bessel's inequality. Therefore,

$$d_{\pi}^{-1}=d_{\pi}^{-1}\|g\|_{\mathcal{H}_{\pi}}^{2}\leq \mathrm{vol}(G/\Gamma),$$

as required.

Optimality of necessary density conditions:

Optimality of necessary density conditions:

```
Theorem (Bekka, '04; Enstad & V., '22)
```

Let $\Gamma \leq G$ be a lattice.

Optimality of necessary density conditions:

Theorem (Bekka, '04; Enstad & V., '22)

Let $\Gamma \leq G$ be a lattice.

(i) If $vol(G/\Gamma)d_{\pi} \leq 1$, then there is $g \in \mathcal{H}_{\pi}$ s.t. $\pi(\Gamma)g$ is a frame.

Optimality of necessary density conditions:

Theorem (Bekka, '04; Enstad & V., '22)

Let $\Gamma \leq G$ be a lattice.

(i) If $vol(G/\Gamma)d_{\pi} \leq 1$, then there is $g \in \mathcal{H}_{\pi}$ s.t. $\pi(\Gamma)g$ is a frame.

(ii) If $\operatorname{vol}(G/\Gamma)d_{\pi} \geq 1$, then there is $g \in \mathcal{H}_{\pi}$ s.t. $\pi(\Gamma)g$ is a Riesz sequence.

Optimality of necessary density conditions:

Theorem (Bekka, '04; Enstad & V., '22) Let $\Gamma \leq G$ be a lattice. (i) If $\operatorname{vol}(G/\Gamma)d_{\pi} \leq 1$, then there is $g \in \mathcal{H}_{\pi}$ s.t. $\pi(\Gamma)g$ is a frame. (ii) If $\operatorname{vol}(G/\Gamma)d_{\pi} \geq 1$, then there is $g \in \mathcal{H}_{\pi}$ s.t. $\pi(\Gamma)g$ is a Riesz sequence. In particular, if $\operatorname{vol}(G/\Gamma)d_{\pi} = 1$, then there is an orthonormal basis $\pi(\Gamma)g$.

Optimality of necessary density conditions:

Theorem (Bekka, '04; Enstad & V., '22) Let $\Gamma \leq G$ be a lattice. (i) If $\operatorname{vol}(G/\Gamma)d_{\pi} \leq 1$, then there is $g \in \mathcal{H}_{\pi}$ s.t. $\pi(\Gamma)g$ is a frame. (ii) If $\operatorname{vol}(G/\Gamma)d_{\pi} \geq 1$, then there is $g \in \mathcal{H}_{\pi}$ s.t. $\pi(\Gamma)g$ is a Riesz sequence. In particular, if $\operatorname{vol}(G/\Gamma)d_{\pi} = 1$, then there is an orthonormal basis $\pi(\Gamma)g$.

Proof ingredients:

Optimality of necessary density conditions:

Theorem (Bekka, '04; Enstad & V., '22) Let $\Gamma \leq G$ be a lattice. (i) If $\operatorname{vol}(G/\Gamma)d_{\pi} \leq 1$, then there is $g \in \mathcal{H}_{\pi}$ s.t. $\pi(\Gamma)g$ is a frame. (ii) If $\operatorname{vol}(G/\Gamma)d_{\pi} \geq 1$, then there is $g \in \mathcal{H}_{\pi}$ s.t. $\pi(\Gamma)g$ is a Riesz sequence. In particular, if $\operatorname{vol}(G/\Gamma)d_{\pi} = 1$, then there is an orthonormal basis $\pi(\Gamma)g$.

Proof ingredients:

1. Hilbert modules over twisted group von Neumann algebras $vN(\Gamma, \sigma)$.

Optimality of necessary density conditions:

Theorem (Bekka, '04; Enstad & V., '22) Let $\Gamma \leq G$ be a lattice. (i) If $\operatorname{vol}(G/\Gamma)d_{\pi} \leq 1$, then there is $g \in \mathcal{H}_{\pi}$ s.t. $\pi(\Gamma)g$ is a frame. (ii) If $\operatorname{vol}(G/\Gamma)d_{\pi} \geq 1$, then there is $g \in \mathcal{H}_{\pi}$ s.t. $\pi(\Gamma)g$ is a Riesz sequence. In particular, if $\operatorname{vol}(G/\Gamma)d_{\pi} = 1$, then there is an orthonormal basis $\pi(\Gamma)g$.

Proof ingredients:

1. Hilbert modules over twisted group von Neumann algebras $vN(\Gamma, \sigma)$.

2. $Z(\Gamma) = \Gamma \cap Z(G)$.

A vector $g \in \mathcal{H}_{\pi}$ is *smooth* if $x \mapsto \pi(x)g$ is smooth; in notation, $g \in \mathcal{H}_{\pi}^{\infty}$.

A vector $g \in \mathcal{H}_{\pi}$ is *smooth* if $x \mapsto \pi(x)g$ is smooth; in notation, $g \in \mathcal{H}_{\pi}^{\infty}$.

A lattice $\Gamma \leq G$ and cocycle $\sigma : \Gamma \times \Gamma \rightarrow \mathbb{T}$ satisfy *Kleppner's condition* if

$$C_{\gamma_0} := \{\gamma \gamma_0 \gamma^{-1} : \gamma \in \mathsf{\Gamma}\}$$

is infinite for $\gamma_0 \in \Gamma \setminus \{e\}$ satisfying $\sigma(\gamma_0, \gamma) = \sigma(\gamma, \gamma_0)$ for all $\gamma \in Z(\gamma_0)$.¹

¹The projective Schrödinger representation π_1 and $\Gamma = a\mathbb{Z}^d \times b\mathbb{Z}^d$ satisfy Kleppner iff $ab \notin \mathbb{Q}$.

A vector $g \in \mathcal{H}_{\pi}$ is smooth if $x \mapsto \pi(x)g$ is smooth; in notation, $g \in \mathcal{H}_{\pi}^{\infty}$.

A lattice $\Gamma \leq G$ and cocycle $\sigma : \Gamma \times \Gamma \rightarrow \mathbb{T}$ satisfy *Kleppner's condition* if

$$C_{\gamma_0} := \{\gamma \gamma_0 \gamma^{-1} : \gamma \in \mathsf{\Gamma}\}$$

is infinite for $\gamma_0 \in \Gamma \setminus \{e\}$ satisfying $\sigma(\gamma_0, \gamma) = \sigma(\gamma, \gamma_0)$ for all $\gamma \in Z(\gamma_0)$.¹

Theorem (Bedos, Enstad, V., '22)

Let $\Gamma \leq G$ be a lattice satisfying Kleppner's condition.

¹The projective Schrödinger representation π_1 and $\Gamma = a\mathbb{Z}^d \times b\mathbb{Z}^d$ satisfy Kleppner iff $ab \notin \mathbb{Q}$.

A vector $g \in \mathcal{H}_{\pi}$ is smooth if $x \mapsto \pi(x)g$ is smooth; in notation, $g \in \mathcal{H}_{\pi}^{\infty}$.

A lattice $\Gamma \leq G$ and cocycle $\sigma : \Gamma \times \Gamma \rightarrow \mathbb{T}$ satisfy *Kleppner's condition* if

$$C_{\gamma_0} := \{\gamma \gamma_0 \gamma^{-1} : \gamma \in \Gamma\}$$

is infinite for $\gamma_0 \in \Gamma \setminus \{e\}$ satisfying $\sigma(\gamma_0, \gamma) = \sigma(\gamma, \gamma_0)$ for all $\gamma \in Z(\gamma_0)$.¹

Theorem (Bedos, Enstad, V., '22)

Let $\Gamma \leq G$ be a lattice satisfying Kleppner's condition. (i) If $\operatorname{vol}(G/\Gamma)d_{\pi} < 1$, then there is $g \in \mathcal{H}^{\infty}_{\pi}$ s.t. $\pi(\Gamma)g$ is a frame.

¹The projective Schrödinger representation π_1 and $\Gamma = a\mathbb{Z}^d \times b\mathbb{Z}^d$ satisfy Kleppner iff $ab \notin \mathbb{Q}$.

A vector $g \in \mathcal{H}_{\pi}$ is smooth if $x \mapsto \pi(x)g$ is smooth; in notation, $g \in \mathcal{H}_{\pi}^{\infty}$.

A lattice $\Gamma \leq G$ and cocycle $\sigma : \Gamma \times \Gamma \rightarrow \mathbb{T}$ satisfy *Kleppner's condition* if

$$C_{\gamma_0} := \{\gamma \gamma_0 \gamma^{-1} : \gamma \in \Gamma\}$$

is infinite for $\gamma_0 \in \Gamma \setminus \{e\}$ satisfying $\sigma(\gamma_0, \gamma) = \sigma(\gamma, \gamma_0)$ for all $\gamma \in Z(\gamma_0)$.¹

Theorem (Bedos, Enstad, V., '22)

Let $\Gamma \leq G$ be a lattice satisfying Kleppner's condition.

- (i) If $\operatorname{vol}(G/\Gamma)d_{\pi} < 1$, then there is $g \in \mathcal{H}_{\pi}^{\infty}$ s.t. $\pi(\Gamma)g$ is a frame.
- (ii) If $vol(G/\Gamma)d_{\pi} > 1$, then there is $g \in \mathcal{H}_{\pi}^{\infty}$ s.t. $\pi(\Gamma)g$ is a Riesz sequence.

¹The projective Schrödinger representation π_1 and $\Gamma = a\mathbb{Z}^d \times b\mathbb{Z}^d$ satisfy Kleppner iff $ab \notin \mathbb{Q}$.

A vector $g \in \mathcal{H}_{\pi}$ is smooth if $x \mapsto \pi(x)g$ is smooth; in notation, $g \in \mathcal{H}_{\pi}^{\infty}$.

A lattice $\Gamma \leq G$ and cocycle $\sigma : \Gamma \times \Gamma \rightarrow \mathbb{T}$ satisfy *Kleppner's condition* if

$$C_{\gamma_0} := \{\gamma \gamma_0 \gamma^{-1} : \gamma \in \Gamma\}$$

is infinite for $\gamma_0 \in \Gamma \setminus \{e\}$ satisfying $\sigma(\gamma_0, \gamma) = \sigma(\gamma, \gamma_0)$ for all $\gamma \in Z(\gamma_0)$.¹

Theorem (Bedos, Enstad, V., '22)

Let $\Gamma \leq G$ be a lattice satisfying Kleppner's condition.

- (i) If $\operatorname{vol}(G/\Gamma)d_{\pi} < 1$, then there is $g \in \mathcal{H}_{\pi}^{\infty}$ s.t. $\pi(\Gamma)g$ is a frame.
- (ii) If $\operatorname{vol}(G/\Gamma)d_{\pi} > 1$, then there is $g \in \mathcal{H}_{\pi}^{\infty}$ s.t. $\pi(\Gamma)g$ is a Riesz sequence.

Proof ingredients:

¹The projective Schrödinger representation π_1 and $\Gamma = a\mathbb{Z}^d \times b\mathbb{Z}^d$ satisfy Kleppner iff $ab \notin \mathbb{Q}$.

A vector $g \in \mathcal{H}_{\pi}$ is smooth if $x \mapsto \pi(x)g$ is smooth; in notation, $g \in \mathcal{H}_{\pi}^{\infty}$.

A lattice $\Gamma \leq G$ and cocycle $\sigma : \Gamma \times \Gamma \rightarrow \mathbb{T}$ satisfy *Kleppner's condition* if

$$C_{\gamma_0} := \{\gamma \gamma_0 \gamma^{-1} : \gamma \in \Gamma\}$$

is infinite for $\gamma_0 \in \Gamma \setminus \{e\}$ satisfying $\sigma(\gamma_0, \gamma) = \sigma(\gamma, \gamma_0)$ for all $\gamma \in Z(\gamma_0)$.¹

Theorem (Bedos, Enstad, V., '22)

Let $\Gamma \leq G$ be a lattice satisfying Kleppner's condition.

- (i) If $\operatorname{vol}(G/\Gamma)d_{\pi} < 1$, then there is $g \in \mathcal{H}_{\pi}^{\infty}$ s.t. $\pi(\Gamma)g$ is a frame.
- (ii) If $\operatorname{vol}(G/\Gamma)d_{\pi} > 1$, then there is $g \in \mathcal{H}_{\pi}^{\infty}$ s.t. $\pi(\Gamma)g$ is a Riesz sequence.

Proof ingredients:

1. Completion of $\mathcal{H}^{\infty}_{\pi}$ into a Hilbert C^* -module.

¹The projective Schrödinger representation π_1 and $\Gamma = a\mathbb{Z}^d \times b\mathbb{Z}^d$ satisfy Kleppner iff $ab \notin \mathbb{Q}$.

A vector $g \in \mathcal{H}_{\pi}$ is smooth if $x \mapsto \pi(x)g$ is smooth; in notation, $g \in \mathcal{H}_{\pi}^{\infty}$.

A lattice $\Gamma \leq G$ and cocycle $\sigma : \Gamma \times \Gamma \rightarrow \mathbb{T}$ satisfy *Kleppner's condition* if

$$C_{\gamma_0} := \{\gamma \gamma_0 \gamma^{-1} : \gamma \in \Gamma\}$$

is infinite for $\gamma_0 \in \Gamma \setminus \{e\}$ satisfying $\sigma(\gamma_0, \gamma) = \sigma(\gamma, \gamma_0)$ for all $\gamma \in Z(\gamma_0)$.¹

Theorem (Bedos, Enstad, V., '22)

Let $\Gamma \leq G$ be a lattice satisfying Kleppner's condition. (i) If $\operatorname{vol}(G/\Gamma)d_{\pi} < 1$, then there is $g \in \mathcal{H}_{\pi}^{\infty}$ s.t. $\pi(\Gamma)g$ is a frame.

(ii) If $vol(G/\Gamma)d_{\pi} > 1$, then there is $g \in \mathcal{H}_{\pi}^{\infty}$ s.t. $\pi(\Gamma)g$ is a Riesz sequence.

Proof ingredients:

- 1. Completion of $\mathcal{H}^{\infty}_{\pi}$ into a Hilbert C^* -module.
- 2. Strict comparison of projections in twisted C^* -algebra $C^*(\Gamma, \sigma)$.

¹The projective Schrödinger representation π_1 and $\Gamma = a\mathbb{Z}^d \times b\mathbb{Z}^d$ satisfy Kleppner iff $ab \notin \mathbb{Q}$.

Outline

- I. Background and motivation
- II. Density theorems for lattices

III. Non-uniform density theorems

IV. Complete systems and overcomplete frames

V. Open problems

Denote by $B_R(x)$ a ball of radius R > 0 and center $x \in G$ that is induced by a periodic metric on G, e.g., a word, Riemannian or Carnot-Carathéodory metric.

Denote by $B_R(x)$ a ball of radius R > 0 and center $x \in G$ that is induced by a periodic metric on G, e.g., a word, Riemannian or Carnot-Carathéodory metric.

The *lower* and *upper Beurling density* of a set $\Lambda \subseteq G$ are defined by

$$D^-(\Lambda) := \liminf_{R o \infty} \inf_{x \in G} rac{\#(\Lambda \cap B_R(x))}{\mu(B_R(e))}$$

and

$$D^+(\Lambda) := \limsup_{R \to \infty} \sup_{x \in G} \frac{\#(\Lambda \cap B_R(x))}{\mu(B_R(e))},$$

respectively.

Denote by $B_R(x)$ a ball of radius R > 0 and center $x \in G$ that is induced by a periodic metric on G, e.g., a word, Riemannian or Carnot-Carathéodory metric.

The *lower* and *upper Beurling density* of a set $\Lambda \subseteq G$ are defined by

$$D^-(\Lambda) := \liminf_{R o \infty} \inf_{x \in G} rac{\#(\Lambda \cap B_R(x))}{\mu(B_R(e))}$$

and

$$D^+(\Lambda) := \limsup_{R o \infty} \sup_{x \in G} rac{\#(\Lambda \cap B_R(x))}{\mu(B_R(e))},$$

respectively.

Example: If $\Gamma \leq G$ is a lattice, then $D^{-}(\Gamma) = D^{+}(\Gamma) = 1/\operatorname{vol}(G/\Gamma)$.

Let \mathcal{B}_{π} be the collection of vectors $m{g}\in\mathcal{H}_{\pi}$ such that

$$\int_{\mathcal{G}} \sup_{y\in B_1(e)} |\langle g, \pi(xy)g\rangle|^2 \ d\mu_{\mathcal{G}}(x) < \infty.$$
Let \mathcal{B}_{π} be the collection of vectors $g \in \mathcal{H}_{\pi}$ such that

$$\int_{G} \sup_{y\in B_1(e)} |\langle g, \pi(xy)g\rangle|^2 \ d\mu_G(x) < \infty.$$

Then \mathcal{B}_{π} is norm dense in $\mathcal{H}_{\pi}.$ In particular, any Gårding vector

$$\pi(\varphi)h := \int_G \varphi(x)\pi(x)h \ d\mu_G(x), \quad \varphi \in C_c(G), \ h \in \mathcal{H}_{\pi},$$

defines an element in \mathcal{B}_{π} .

Let \mathcal{B}_{π} be the collection of vectors $g \in \mathcal{H}_{\pi}$ such that

$$\int_{G} \sup_{y\in B_1(e)} |\langle g, \pi(xy)g\rangle|^2 \ d\mu_G(x) < \infty.$$

Then \mathcal{B}_{π} is norm dense in $\mathcal{H}_{\pi}.$ In particular, any Gårding vector

$$\pi(\varphi)h := \int_G \varphi(x)\pi(x)h \ d\mu_G(x), \quad \varphi \in C_c(G), \ h \in \mathcal{H}_{\pi},$$

defines an element in \mathcal{B}_{π} .

Theorem (Führ, Gröchenig, Haimi, Klotz, Romero, '16) Let $\Lambda \subseteq G$ and $g \in \mathcal{H}_{\pi}$.

Let \mathcal{B}_{π} be the collection of vectors $g \in \mathcal{H}_{\pi}$ such that

$$\int_{G} \sup_{y\in B_1(e)} |\langle g, \pi(xy)g\rangle|^2 \ d\mu_G(x) < \infty.$$

Then \mathcal{B}_{π} is norm dense in \mathcal{H}_{π} . In particular, any Gårding vector

$$\pi(\varphi)h := \int_G \varphi(x)\pi(x)h \ d\mu_G(x), \quad \varphi \in C_c(G), \ h \in \mathcal{H}_{\pi},$$

defines an element in \mathcal{B}_{π} .

Theorem (Führ, Gröchenig, Haimi, Klotz, Romero, '16) Let $\Lambda \subseteq G$ and $g \in \mathcal{H}_{\pi}$. (i) If $\pi(\Lambda)g$ is a frame for \mathcal{H}_{π} with $g \in \mathcal{B}_{\pi}$, then $D^{-}(\Lambda) \geq d_{\pi}$.

Let \mathcal{B}_{π} be the collection of vectors $g \in \mathcal{H}_{\pi}$ such that

$$\int_{G} \sup_{y\in B_1(e)} |\langle g, \pi(xy)g\rangle|^2 \ d\mu_G(x) < \infty.$$

Then \mathcal{B}_{π} is norm dense in \mathcal{H}_{π} . In particular, any Gårding vector

$$\pi(\varphi)h := \int_G \varphi(x)\pi(x)h \ d\mu_G(x), \quad \varphi \in C_c(G), \ h \in \mathcal{H}_{\pi},$$

defines an element in \mathcal{B}_{π} .

Theorem (Führ, Gröchenig, Haimi, Klotz, Romero, '16) Let $\Lambda \subseteq G$ and $g \in \mathcal{H}_{\pi}$. (i) If $\pi(\Lambda)g$ is a frame for \mathcal{H}_{π} with $g \in \mathcal{B}_{\pi}$, then $D^{-}(\Lambda) \geq d_{\pi}$. (ii) If $\pi(\Lambda)g$ is a Riesz sequence in \mathcal{H}_{π} , then $D^{+}(\Lambda) \leq d_{\pi}$.

Let \mathcal{B}_{π} be the collection of vectors $g \in \mathcal{H}_{\pi}$ such that

$$\int_{G} \sup_{y\in B_1(e)} |\langle g, \pi(xy)g\rangle|^2 \ d\mu_G(x) < \infty.$$

Then \mathcal{B}_{π} is norm dense in \mathcal{H}_{π} . In particular, any Gårding vector

$$\pi(\varphi)h := \int_G \varphi(x)\pi(x)h \ d\mu_G(x), \quad \varphi \in C_c(G), \ h \in \mathcal{H}_{\pi},$$

defines an element in \mathcal{B}_{π} .

Theorem (Führ, Gröchenig, Haimi, Klotz, Romero, '16) Let $\Lambda \subseteq G$ and $g \in \mathcal{H}_{\pi}$. (i) If $\pi(\Lambda)g$ is a frame for \mathcal{H}_{π} with $g \in \mathcal{B}_{\pi}$, then $D^{-}(\Lambda) \geq d_{\pi}$. (ii) If $\pi(\Lambda)g$ is a Riesz sequence in \mathcal{H}_{π} , then $D^{+}(\Lambda) \leq d_{\pi}$.

Extensions: Similar statements hold for unimodular solvable Lie groups with possibly exponential growth; (Enstad, V., '22) and (Caspers, V. '22).

The group ${\mathcal G}$ is called *homogeneous* if its Lie algebra ${\mathfrak g}$ admits automorphisms of the form

$$D_r := \exp_{\mathrm{GL}}(\ln(r)A), \quad r > 0,$$

for some diagonalisible $A : \mathfrak{g} \to \mathfrak{g}$ with positive eigenvalues.

The group G is called *homogeneous* if its Lie algebra $\mathfrak g$ admits automorphisms of the form

$$D_r := \exp_{\mathrm{GL}}(\ln(r)A), \quad r > 0,$$

for some diagonalisible $A : \mathfrak{g} \to \mathfrak{g}$ with positive eigenvalues.

Automorphic dilations on G are defined by

$$\delta_r := \exp_G \circ D_r \circ \exp_G^{-1}.$$

for r > 0.

The group G is called *homogeneous* if its Lie algebra $\mathfrak g$ admits automorphisms of the form

 $D_r := \exp_{\mathrm{GL}}(\ln(r)A), \quad r > 0,$

for some diagonalisible $A : \mathfrak{g} \to \mathfrak{g}$ with positive eigenvalues.

Automorphic dilations on G are defined by

$$\delta_r := \exp_G \circ D_r \circ \exp_G^{-1}$$
.

for r > 0.

Theorem (Gröchenig, Romero, Rottensteiner, V., '20)

Let G be a homogeous nilpotent Lie group with dilations $(\delta_r)_{r>0}$. If $g \in \mathcal{H}^{\infty}_{\pi}$ and $\pi(\Lambda)g$ is a frame (resp. Riesz sequence), then there exists $\varepsilon > 0$ such that, for all $r \in (1 - \varepsilon, 1 + \varepsilon)$, the system

 $\pi(\delta_r(\Lambda))g = (\pi(\delta_r(\lambda))g)_{\lambda \in \Lambda}$

is a frame (resp. Riesz sequence).

The group G is called *homogeneous* if its Lie algebra $\mathfrak g$ admits automorphisms of the form

 $D_r := \exp_{\mathrm{GL}}(\ln(r)A), \quad r > 0,$

for some diagonalisible $A : \mathfrak{g} \to \mathfrak{g}$ with positive eigenvalues.

Automorphic dilations on G are defined by

$$\delta_r := \exp_G \circ D_r \circ \exp_G^{-1}$$
.

for r > 0.

Theorem (Gröchenig, Romero, Rottensteiner, V., '20)

Let G be a homogeous nilpotent Lie group with dilations $(\delta_r)_{r>0}$. If $g \in \mathcal{H}_{\pi}^{\infty}$ and $\pi(\Lambda)g$ is a frame (resp. Riesz sequence), then there exists $\varepsilon > 0$ such that, for all $r \in (1 - \varepsilon, 1 + \varepsilon)$, the system

 $\pi(\delta_r(\Lambda))g = (\pi(\delta_r(\lambda))g)_{\lambda \in \Lambda}$

is a frame (resp. Riesz sequence).

Theorem is an adaption/extension of a corresponding theorem for $G = \mathbb{R}^{2d}$ by Gröchenig, Ortega-Cerdà and Romero [Adv. Math., '14].

Theorem

Let G be a homogeneous group and let $\Lambda \subseteq G$. Suppose $g \in \mathcal{H}^{\infty}_{\pi}$.

Theorem

Let G be a homogeneous group and let $\Lambda \subseteq G$. Suppose $g \in \mathcal{H}^{\infty}_{\pi}$. (i) If $\pi(\Lambda)g$ is a frame for \mathcal{H}_{π} , then $D^{-}(\Lambda) > d_{\pi}$.

Theorem

Let G be a homogeneous group and let $\Lambda \subseteq G$. Suppose $g \in \mathcal{H}^{\infty}_{\pi}$.

(i) If $\pi(\Lambda)g$ is a frame for \mathcal{H}_{π} , then $D^{-}(\Lambda) > d_{\pi}$.

(ii) If $\pi(\Lambda)g$ is a Riesz sequence in \mathcal{H}_{π} , then $D^+(\Lambda) < d_{\pi}$.

Theorem

Let G be a homogeneous group and let $\Lambda \subseteq G$. Suppose $g \in \mathcal{H}^{\infty}_{\pi}$. (i) If $\pi(\Lambda)g$ is a frame for \mathcal{H}_{π} , then $D^{-}(\Lambda) > d_{\pi}$.

(ii) If $\pi(\Lambda)g$ is a Riesz sequence in \mathcal{H}_{π} , then $D^+(\Lambda) < d_{\pi}$.

Corollary: If $\pi(\Lambda)g$ is an orthonormal basis, then $g \notin \mathcal{H}_{\pi}^{\infty}$.²

²Orthonormal bases $\pi(\Lambda)g$ with $g \notin \mathcal{H}_{\pi}^{\infty}$ do exist in the orbit of arbitrary nilpotent Lie groups G; cf. Gröchenig and Rottensteiner [J. Funct. Anal., '18] and Oussa [J. Funct. Anal., '19].

Theorem

Let G be a homogeneous group and let $\Lambda \subseteq G$. Suppose $g \in \mathcal{H}^{\infty}_{\pi}$. (i) If $\pi(\Lambda)g$ is a frame for \mathcal{H}_{π} , then $D^{-}(\Lambda) > d_{\pi}$.

(ii) If $\pi(\Lambda)g$ is a Riesz sequence in \mathcal{H}_{π} , then $D^+(\Lambda) < d_{\pi}$.

Corollary: If $\pi(\Lambda)g$ is an orthonormal basis, then $g \notin \mathcal{H}_{\pi}^{\infty}$.²

²Orthonormal bases $\pi(\Lambda)g$ with $g \notin \mathcal{H}_{\pi}^{\infty}$ do exist in the orbit of arbitrary nilpotent Lie groups G; cf. Gröchenig and Rottensteiner [J. Funct. Anal., '18] and Oussa [J. Funct. Anal., '19].

Theorem

Let G be a homogeneous group and let $\Lambda \subseteq G$. Suppose $g \in \mathcal{H}^{\infty}_{\pi}$. (i) If $\pi(\Lambda)g$ is a frame for \mathcal{H}_{π} , then $D^{-}(\Lambda) > d_{\pi}$.

(ii) If $\pi(\Lambda)g$ is a Riesz sequence in \mathcal{H}_{π} , then $D^+(\Lambda) < d_{\pi}$.

Corollary: If $\pi(\Lambda)g$ is an orthonormal basis, then $g \notin \mathcal{H}_{\pi}^{\infty}$.²

Proof.

²Orthonormal bases $\pi(\Lambda)g$ with $g \notin \mathcal{H}_{\pi}^{\infty}$ do exist in the orbit of arbitrary nilpotent Lie groups G; cf. Gröchenig and Rottensteiner [J. Funct. Anal., '18] and Oussa [J. Funct. Anal., '19].

Theorem

Let G be a homogeneous group and let $\Lambda \subseteq G$. Suppose $g \in \mathcal{H}^{\infty}_{\pi}$. (i) If $\pi(\Lambda)g$ is a frame for \mathcal{H}_{π} , then $D^{-}(\Lambda) > d_{\pi}$. (ii) If $\pi(\Lambda)g$ is a Riesz sequence in \mathcal{H}_{π} , then $D^{+}(\Lambda) < d_{\pi}$.

Corollary: If $\pi(\Lambda)g$ is an orthonormal basis, then $g \notin \mathcal{H}_{\pi}^{\infty}$.²

Proof.

(i) Arguing by contradiction, assume $\pi(\Lambda)g$ is a frame with $D^-(\Lambda) = d_{\pi}$.

²Orthonormal bases $\pi(\Lambda)g$ with $g \notin \mathcal{H}_{\pi}^{\infty}$ do exist in the orbit of arbitrary nilpotent Lie groups G; cf. Gröchenig and Rottensteiner [J. Funct. Anal., '18] and Oussa [J. Funct. Anal., '19].

Theorem

Let G be a homogeneous group and let $\Lambda \subseteq G$. Suppose $g \in \mathcal{H}^{\infty}_{\pi}$.

(i) If $\pi(\Lambda)g$ is a frame for \mathcal{H}_{π} , then $D^{-}(\Lambda) > d_{\pi}$.

(ii) If $\pi(\Lambda)g$ is a Riesz sequence in \mathcal{H}_{π} , then $D^+(\Lambda) < d_{\pi}$.

Corollary: If $\pi(\Lambda)g$ is an orthonormal basis, then $g \notin \mathcal{H}_{\pi}^{\infty}$.²

Proof.

(i) Arguing by contradiction, assume $\pi(\Lambda)g$ is a frame with $D^-(\Lambda) = d_{\pi}$. There exists r > 1 such that $\pi(\delta_r(\Lambda))g$ is a frame.

²Orthonormal bases $\pi(\Lambda)g$ with $g \notin \mathcal{H}_{\pi}^{\infty}$ do exist in the orbit of arbitrary nilpotent Lie groups G; cf. Gröchenig and Rottensteiner [J. Funct. Anal., '18] and Oussa [J. Funct. Anal., '19].

Theorem

Let G be a homogeneous group and let $\Lambda \subseteq G$. Suppose $g \in \mathcal{H}^{\infty}_{\pi}$.

(i) If $\pi(\Lambda)g$ is a frame for \mathcal{H}_{π} , then $D^{-}(\Lambda) > d_{\pi}$.

(ii) If $\pi(\Lambda)g$ is a Riesz sequence in \mathcal{H}_{π} , then $D^+(\Lambda) < d_{\pi}$.

Corollary: If $\pi(\Lambda)g$ is an orthonormal basis, then $g \notin \mathcal{H}_{\pi}^{\infty}$.²

Proof.

(i) Arguing by contradiction, assume $\pi(\Lambda)g$ is a frame with $D^-(\Lambda) = d_{\pi}$. There exists r > 1 such that $\pi(\delta_r(\Lambda))g$ is a frame. Then

 $D^{-}(\delta_r(\Lambda)) = r^{-Q}D^{-}(\Lambda) < d_{\pi}.$

²Orthonormal bases $\pi(\Lambda)g$ with $g \notin \mathcal{H}_{\pi}^{\infty}$ do exist in the orbit of arbitrary nilpotent Lie groups G; cf. Gröchenig and Rottensteiner [J. Funct. Anal., '18] and Oussa [J. Funct. Anal., '19].

Theorem

Let G be a homogeneous group and let $\Lambda \subseteq G$. Suppose $g \in \mathcal{H}^{\infty}_{\pi}$.

(i) If $\pi(\Lambda)g$ is a frame for \mathcal{H}_{π} , then $D^{-}(\Lambda) > d_{\pi}$.

(ii) If $\pi(\Lambda)g$ is a Riesz sequence in \mathcal{H}_{π} , then $D^+(\Lambda) < d_{\pi}$.

Corollary: If $\pi(\Lambda)g$ is an orthonormal basis, then $g \notin \mathcal{H}_{\pi}^{\infty}$.²

Proof.

(i) Arguing by contradiction, assume $\pi(\Lambda)g$ is a frame with $D^-(\Lambda) = d_{\pi}$. There exists r > 1 such that $\pi(\delta_r(\Lambda))g$ is a frame. Then

$$D^{-}(\delta_r(\Lambda)) = r^{-Q}D^{-}(\Lambda) < d_{\pi}.$$

This contradicts the necessary density theorem $D^-(\delta_r(\Lambda)) \ge d_{\pi}$.

²Orthonormal bases $\pi(\Lambda)g$ with $g \notin \mathcal{H}_{\pi}^{\infty}$ do exist in the orbit of arbitrary nilpotent Lie groups G; cf. Gröchenig and Rottensteiner [J. Funct. Anal., '18] and Oussa [J. Funct. Anal., '19].

Theorem

Let G be a homogeneous group and let $\Lambda \subseteq G$. Suppose $g \in \mathcal{H}^{\infty}_{\pi}$.

(i) If
$$\pi(\Lambda)g$$
 is a frame for \mathcal{H}_{π} , then $D^{-}(\Lambda) > d_{\pi}$.

(ii) If $\pi(\Lambda)g$ is a Riesz sequence in \mathcal{H}_{π} , then $D^+(\Lambda) < d_{\pi}$.

Corollary: If $\pi(\Lambda)g$ is an orthonormal basis, then $g \notin \mathcal{H}_{\pi}^{\infty}$.²

Proof.

(i) Arguing by contradiction, assume $\pi(\Lambda)g$ is a frame with $D^-(\Lambda) = d_{\pi}$. There exists r > 1 such that $\pi(\delta_r(\Lambda))g$ is a frame. Then

$$D^{-}(\delta_r(\Lambda)) = r^{-Q}D^{-}(\Lambda) < d_{\pi}.$$

This contradicts the necessary density theorem $D^-(\delta_r(\Lambda)) \ge d_{\pi}$.

(ii) Similar.

²Orthonormal bases $\pi(\Lambda)g$ with $g \notin \mathcal{H}_{\pi}^{\infty}$ do exist in the orbit of arbitrary nilpotent Lie groups G; cf. Gröchenig and Rottensteiner [J. Funct. Anal., '18] and Oussa [J. Funct. Anal., '19].

Outline

- I. Background and motivation
- II. Density theorems for lattices
- III. Non-uniform density theorems

IV. Complete systems and overcomplete frames

V. Open problems

Recall: If $\pi(\Gamma)g$ is complete in \mathcal{H}_{π} for a lattice $\Gamma \leq G$, then

 $D^+(\Gamma)=D^-(\Gamma)\geq d_\pi.$

Recall: If $\pi(\Gamma)g$ is complete in \mathcal{H}_{π} for a lattice $\Gamma \leq G$, then $D^{+}(\Gamma) = D^{-}(\Gamma) \geq d_{\pi}.$

Failure: There exists $g \in L^2(\mathbb{R})$ and $\Lambda \subseteq \mathbb{R}^2$ with

 $D^+(\Lambda) = 0$

such that $\pi_1(\Lambda)g = \{e^{2\pi i\lambda_2 \cdot}g(\cdot - \lambda_1)\}_{\lambda \in \Lambda}$ is complete in $L^2(\mathbb{R})$.

Recall: If $\pi(\Gamma)g$ is complete in \mathcal{H}_{π} for a lattice $\Gamma \leq G$, then

 $D^+(\Gamma) = D^-(\Gamma) \ge d_{\pi}.$

Failure: There exists $g \in L^2(\mathbb{R})$ and $\Lambda \subseteq \mathbb{R}^2$ with

 $D^+(\Lambda) = 0$

such that $\pi_1(\Lambda)g = \{e^{2\pi i\lambda_2 \cdot}g(\cdot - \lambda_1)\}_{\lambda \in \Lambda}$ is complete in $L^2(\mathbb{R})$.

Theorem (Wang; Appl. Comput. Harmon. Anal. '04) Let $\Gamma \leq \mathbb{R}^2$ be a lattice with $D(\Lambda) > 1$. For any $\varepsilon > 0$, there exists $g \in L^2(\mathbb{R})$ and a subset $\Lambda \subseteq \Gamma$ with

 $D^{-}(\Lambda) = 0$ and $D^{+}(\Lambda) < \varepsilon$

such that $\pi_1(\Lambda)g = \{e^{2\pi i\lambda_2} g(\cdot - \lambda_1)\}_{\lambda \in \Lambda}$ is complete in $L^2(\mathbb{R})$.

A subset $\Lambda \subseteq G$ is a Delone set if

- 1. There is a compact set $K \subseteq G$ such that $\Lambda K = G$;
- 2. There is an open set $U \subseteq G$ such that $|\Lambda \cap xU| \leq 1$ for all $x \in G$.

A subset $\Lambda \subseteq {\it G}$ is a Delone set if

- 1. There is a compact set $K \subseteq G$ such that $\Lambda K = G$;
- 2. There is an open set $U \subseteq G$ such that $|\Lambda \cap xU| \leq 1$ for all $x \in G$.

Definition (Björklund, Hartnick; Duke Math. J. '18)

A Delone set $\Lambda \subseteq G$ is an *approximate lattice* if

A subset $\Lambda \subseteq$ G is a Delone set if

- 1. There is a compact set $K \subseteq G$ such that $\Lambda K = G$;
- 2. There is an open set $U \subseteq G$ such that $|\Lambda \cap xU| \leq 1$ for all $x \in G$.

Definition (Björklund, Hartnick; Duke Math. J. '18) A Delone set $\Lambda \subset G$ is an *approximate lattice* if

(a1) The identity $e \in G$ is contained in Λ ;

A subset $\Lambda \subseteq$ G is a Delone set if

- 1. There is a compact set $K \subseteq G$ such that $\Lambda K = G$;
- 2. There is an open set $U \subseteq G$ such that $|\Lambda \cap xU| \leq 1$ for all $x \in G$.

Definition (Björklund, Hartnick; Duke Math. J. '18) A Delone set $\Lambda \subseteq G$ is an *approximate lattice* if (a1) The identity $e \in G$ is contained in Λ ; (a2) Λ is symmetric, i.e., $\Lambda^{-1} = \Lambda$;

A subset $\Lambda \subseteq$ G is a Delone set if

- 1. There is a compact set $K \subseteq G$ such that $\Lambda K = G$;
- 2. There is an open set $U \subseteq G$ such that $|\Lambda \cap xU| \leq 1$ for all $x \in G$.

Definition (Björklund, Hartnick; Duke Math. J. '18) A Delone set $\Lambda \subseteq G$ is an *approximate lattice* if (a1) The identity $e \in G$ is contained in Λ ; (a2) Λ is symmetric, i.e., $\Lambda^{-1} = \Lambda$; (a3) There exists finite $F \subseteq G$ such that $\Lambda^2 \subseteq F\Lambda$.

A subset $\Lambda \subseteq {\it G}$ is a Delone set if

- 1. There is a compact set $K \subseteq G$ such that $\Lambda K = G$;
- 2. There is an open set $U \subseteq G$ such that $|\Lambda \cap xU| \leq 1$ for all $x \in G$.

Definition (Björklund, Hartnick; Duke Math. J. '18)

A Delone set $\Lambda \subseteq G$ is an *approximate lattice* if

```
(a1) The identity e \in G is contained in \Lambda;
```

- (a2) Λ is symmetric, i.e., $\Lambda^{-1} = \Lambda$;
- (a3) There exists finite $F \subseteq G$ such that $\Lambda^2 \subseteq F\Lambda$.

A lattice $\Lambda \leq G$ is an approximate lattice, but also suitable subsets thereof.³

³Approximate lattices might also exist in groups not admitting a lattice.

A subset $\Lambda \subseteq G$ is a Delone set if

- 1. There is a compact set $K \subseteq G$ such that $\Lambda K = G$;
- 2. There is an open set $U \subseteq G$ such that $|\Lambda \cap xU| \leq 1$ for all $x \in G$.

Definition (Björklund, Hartnick; Duke Math. J. '18)

A Delone set $\Lambda \subseteq G$ is an *approximate lattice* if

(a1) The identity $e \in G$ is contained in Λ ;

- (a2) Λ is symmetric, i.e., $\Lambda^{-1} = \Lambda$;
- (a3) There exists finite $F \subseteq G$ such that $\Lambda^2 \subseteq F\Lambda$.

A lattice $\Lambda \leq G$ is an approximate lattice, but also suitable subsets thereof.³

Theorem (Enstad, V. '22)

Let $\Lambda \subseteq G$ be an approximate lattice and $F \subseteq G$ finite s.t. $\Lambda^2 \subseteq F\Lambda$.

³Approximate lattices might also exist in groups not admitting a lattice.

A subset $\Lambda \subseteq G$ is a Delone set if

- 1. There is a compact set $K \subseteq G$ such that $\Lambda K = G$;
- 2. There is an open set $U \subseteq G$ such that $|\Lambda \cap xU| \leq 1$ for all $x \in G$.

Definition (Björklund, Hartnick; Duke Math. J. '18)

A Delone set $\Lambda \subseteq G$ is an *approximate lattice* if

(a1) The identity $e \in G$ is contained in Λ ;

- (a2) Λ is symmetric, i.e., $\Lambda^{-1} = \Lambda$;
- (a3) There exists finite $F \subseteq G$ such that $\Lambda^2 \subseteq F\Lambda$.

A lattice $\Lambda \leq G$ is an approximate lattice, but also suitable subsets thereof.³

Theorem (Enstad, V. '22)

Let $\Lambda \subseteq G$ be an approximate lattice and $F \subseteq G$ finite s.t. $\Lambda^2 \subseteq F\Lambda$. If there exists $g \in \mathcal{H}_{\pi}$ such that $\pi(\Lambda)g$ is complete in \mathcal{H}_{π} , then

 $D^{-}(\Lambda) \geq d_{\pi}/|F|.$

³Approximate lattices might also exist in groups not admitting a lattice.
Approximate lattices

A subset $\Lambda \subseteq G$ is a Delone set if

- 1. There is a compact set $K \subseteq G$ such that $\Lambda K = G$;
- 2. There is an open set $U \subseteq G$ such that $|\Lambda \cap xU| \leq 1$ for all $x \in G$.

Definition (Björklund, Hartnick; Duke Math. J. '18)

A Delone set $\Lambda \subseteq G$ is an *approximate lattice* if

(a1) The identity $e \in G$ is contained in Λ ;

- (a2) Λ is symmetric, i.e., $\Lambda^{-1} = \Lambda$;
- (a3) There exists finite $F \subseteq G$ such that $\Lambda^2 \subseteq F\Lambda$.

A lattice $\Lambda \leq G$ is an approximate lattice, but also suitable subsets thereof.³

Theorem (Enstad, V. '22)

Let $\Lambda \subseteq G$ be an approximate lattice and $F \subseteq G$ finite s.t. $\Lambda^2 \subseteq F\Lambda$. If there exists $g \in \mathcal{H}_{\pi}$ such that $\pi(\Lambda)g$ is complete in \mathcal{H}_{π} , then

 $D^-(\Lambda) \ge d_\pi/|F|.$

In particular, if $\Lambda \leq G$ is a lattice, then $D^{-}(\Lambda) \geq d_{\pi}$.

³Approximate lattices might also exist in groups not admitting a lattice.

By necessary density, a frame $\pi(\Lambda)g$ for \mathcal{H}_{π} with $g\in\mathcal{B}_{\pi}$ and

 $D^-(\Lambda) > d_\pi$

is overcomplete, i.e., remains complete after removal of an element.

By necessary density, a frame $\pi(\Lambda)g$ for \mathcal{H}_{π} with $g\in\mathcal{B}_{\pi}$ and

 $D^-(\Lambda) > d_\pi$

is overcomplete, i.e., remains complete after removal of an element.

Theorem (Caspers, V., '22)

Suppose $\pi(\Lambda)g$ is a frame for \mathcal{H}_{π} with $g \in \mathcal{H}_{\pi}^{\infty}$ and $D^{-}(\Lambda) > d_{\pi}$. Then there exists $\Lambda' \subseteq \Lambda$ with $D^{-}(\Lambda') > 0$ such that $(\pi(\lambda)g)_{\lambda \in \Lambda \setminus \Lambda'}$ is a frame for \mathcal{H}_{π} .

By necessary density, a frame $\pi(\Lambda)g$ for \mathcal{H}_{π} with $g\in\mathcal{B}_{\pi}$ and

 $D^-(\Lambda) > d_\pi$

is overcomplete, i.e., remains complete after removal of an element.

Theorem (Caspers, V., '22)

Suppose $\pi(\Lambda)g$ is a frame for \mathcal{H}_{π} with $g \in \mathcal{H}_{\pi}^{\infty}$ and $D^{-}(\Lambda) > d_{\pi}$. Then there exists $\Lambda' \subseteq \Lambda$ with $D^{-}(\Lambda') > 0$ such that $(\pi(\lambda)g)_{\lambda \in \Lambda \setminus \Lambda'}$ is a frame for \mathcal{H}_{π} .

Consequence: Infinitely many elements from $\pi(\Lambda)g$ can be removed yet leave a frame.

Outline

- I. Background and motivation
- II. Density theorems for lattices
- III. Non-uniform density theorems
- IV. Complete systems and overcomplete frames
- V. Open problems

Open problems

Open problems

1. Strict density inequalities. For a non-homogeneous group G: If $\pi(\Lambda)g$ is a frame for \mathcal{H}_{π} with $g \in \mathcal{H}_{\pi}^{\infty}$, then

 $D^{-}(\Lambda) > d_{\pi}.$

Open problems

1. Strict density inequalities. For a non-homogeneous group G: If $\pi(\Lambda)g$ is a frame for \mathcal{H}_{π} with $g \in \mathcal{H}_{\pi}^{\infty}$, then

$$D^{-}(\Lambda) > d_{\pi}.$$

2. Near the critical density. For every $\varepsilon > 0$ and $g \in \mathcal{H}^{\infty}_{\pi}$, there exists $\Lambda \subseteq G$ such that

$$D^+(\Lambda) \leq d_\pi + arepsilon$$

and $\pi(\Lambda)g$ is a frame for $\mathcal{H}^{\infty}_{\pi}$.

References

Bédos, Enstad, van Velthoven. Smooth lattice orbits of nilpotent groups and strict comparision of projections. *J. Funct. Anal.* 283(6), Article ID 109572, 48p., 2022.

Bekka. Square integrable representations, von Neumann algebras and an application to Gabor analysis. *J. Fourier Anal. Appl.*, 10(4):325-349, 2004.

Caspers, van Velthoven. Overcompleteness of coherent frames on unimodular amenable groups. arXiv:2209.03719.

Enstad, van Velthoven. On sufficient density conditions for lattice orbits of relative discrete series. *Arch. Math.* 199(3): 279-291, 2022.

Enstad, van Velthoven. Coherent systems over approximate lattices in amenable groups. arXiv:2208.05896.

Führ, Gröchenig, Haimi, Klotz, Romero. Density of sampling and interpolation in reproducing kernel Hilbert spaces. *J. Lond. Math. Soc., II. Ser.*, 96(3):663-686, 2017

Gröchenig, Romero, Rottensteiner, van Velthoven. Balian-Low type theorems on homogeneous groups. *Anal. Math.*, 46(3):483 - 515, 2020.

Romero, van Velthoven. The density theorem for discrete series representations restricted to lattices. *Expo. Math.* 40(2) 265 - 301, 2022.