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Back to Schrodinger (15 e

Given a solution u(t, x) of the classical Schrodinger equation (S) in R”

{ iOiu—Au=20
Ujt=0 = Uo,
the Fourier transform u(t, &) with respect to the spatial variable x
satisfies
i0:u(t, &) = —[¢Pu(t,€),  @(0,€) = do(€) (1)
Solving the corresponding ODE and taking the inverse Fourier transform
u(t) = [ O DaE)ae @
R
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Another viewpoint (5 s

One can also interpreted as the inverse Fourier transform of a data on
the paraboloid S in the space of frequencies

u(t,x) = / 0+ Gy (€) e = /AefY‘Zg<z)da(z)
JRN JS
where R = R x R”, defined as
g def {(a,f) ERxR"|a= |g|2}.

where y = (t,x) and z = (o, &)
|

[ ull o gy = ||?71(gd0—)||LP'(R”+1)

T



UNIVERSITA

Geometric interpretation e

m Let us endow S with the measure do = dé€.

— do is not the intrinsic surface measure of S, which is

du = /14 2[¢|d€.
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The original approach of Strichartz, 1977 = maw
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RESTRICTIONS OF FOURIER TRANSFORMS TO
QUADRATIC SURFACES AND DECAY OF SOLUTIONS
OF WAVE EQUATIONS

ROBERT S. STRICHARTZ

§1. Introduction
Let S be a subset of IR* and du a positive measure supported on S and of
temperate growth at infinity. We consider the following two problems:

Problem A. For which values of p, 1 = p < 2, is it true that f € LP(IR")
implies f has a well-defined restriction to S in L*(du) with

(1.1) Umz(m)m = o|lflls?

Problem B. For which values of g, 2 < g < o, is it true that the tempered
distribution Fdu for each F € L*(du) has Fourier transform in L2(IR") with

N 1/2
1.2) Fdw) "o =< c,,(J|F\2dp.) ?




Strichartz says

v ’

A simple duality argument shows these two problems are completely equiva-
lent if p and g are dual indices, (1/p) + (1/q) = 1. Interest in Problem A when
S is a sphere stems from the work of C. Fefferman [3], and in this case the
answer is known (see [11]). Interest in Problem B was recently signalled by 1.
Segal [6] who studied the special case S = {(x, y) € IR? : y*> — x? = 1} and gave
the interpretation of the answer as a space-time decay for solutions of the
Klein-Gordon equation with finite relativistic-invariant norm.

In this paper we give a complete solution when S is a quadratic surface given
by
(1.3) S={x€R":Rx) =r}
where R(x) is a polynomial of degree two with real coefficients and r is a real
constant. To avoid triviality we assume R is not a function of fewer than n
variables, so that aside from isolated points S is a n — 1-dimensional C* mani-
fold. There is a canonical measure du associated to the function R (not intrinsic
to the surface S, however) given by
dn o dhys

[0R/8x,|

T o

(1.4) du =



Fourier restriction sy

A lot of contributors: Stein, Fefferman, Tomas, etc.

]
Problem: Can we restrict Fourier transform of LP functions to subsets ?

m fin L}Y(R") implies F(f) continuous — OK.

mf inAL2(]RA”) implies F(f) in L2(R") — arbitrary on a zero meas
set S of R".

m what happens for 1 < p < 27

m it depends on the surface!

m if the surface is “flat” we cannot do a lot

S o
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First observation (15 oS

— The Fourier transform of a LP function, for any p > 1, cannot be
restricted to hyperplanes.

m This f belongs to LP(R"), for all p > 1
e*\X/\Z

f(x)= Tl x = (x1,x") € R, (3)

m its Fourier transform does not admit a restriction on S = {& =0}

£(0,¢) / g € dxq dx’
§) = e —
' 1+l

— what happens for different surfaces?

S o



The statement
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Tomas and Stein

One can restrict the Fourier transform of LP(IR") functions, for p > 1
(close to 1), to hypersurfaces S that are “sufficiently curved”, (main

example: the sphere).
Let us state more formally the questions

Problem: given a hypersurface S C R" endowed with a smooth measure
do, the restriction problem asks for which pairs (p, g) an inequality of
the form

1F(F)|5ll 1a5.00) < ClIFlloqen) (4)
holds for all f in S(R").

T
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Dual approach (L5 s

m The operator Rs is continuous from LP(R") to Lq(g, do)?
Rsf = JF(f)|s

— not completely settled in its general form

from now on

we focus on the case g = 2
m the adjoint operator R¢ is continuous from L2(§7 do) to LP'(R")?
Rsg =T (gdo)

\|571(gdU)HLp/(Rn) < CHgHL2(§.do) (5)

S
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the Case q == 2 |:|‘l"\|1n\\

A basic counterexample shows that the range of p for which the estimate
holds cannot be the entire interval 1 < p < 2;

Example (Knapp)

Let S be the (n — 1)-dimensional sphere in R” endowed with the standard
2n+2 ’ 4

n+3 n+3

measure du. The estimate can hold only if p <

m Consider the equivalent formulation of the estimate
185l @y < Cllgllz(sm-1) (6)
m Let 0 > 0 and let g5 be the characteristic function “spherical cap”

G={xeS5:|x el <d}.

S



Proof of Knapp, | e

m We consider the equivalent formulation of estimate

18011 oy < Cllgll2(sm-1) (7)

m Let 6 > 0 be small and let gs be the characteristic function on Cs.
| |C§| ~ §"1 This implies Hg6||l_2(5nfl) ~ §(n=1)/2,

m If x € R" is orthogonal to the vertical direction

850 (x)| =

/SH eix-fgé(é)dg(g)’ _

, 1/p
185 ey = ( [ igstor dx)

S

/. eix-fdo_(é-)' -~ ‘C§| ~ 6!1—1.
Cs
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Geometric interpretation e

m let 75 be the tube in the x space oriented orthogonally to the sphere

[0 L6 Y x ... x[-6L 6 x [-672,677

| ] |T5| ~ oL

Ts
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Proof of Knapp, Il (L5 s

m For x in Ts and ¢ very small the quantity x - £ is almost zero for

¢ e Gs.
, 1/p
1851l () = (/ ga(x)I? dX) (8)
, 1/p
> ( g (x)I? dx) (9)
Ts
, 1/p
~ ( 6(”71)13 dX> (10)
Ts
~ §(n—1)|T6|1/P/ ~ §n=1) 5(=n=1)/p’ (11)
The estimate can hence be valid only if (the inequality is > since
5 —0)
no1_ n+1 > n—1
p’ 2

which is the conclusion.



Tomas-Stein
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The above range is indeed the correct one for non vanishing curvature.

Theorem (Tomas-Stein, 1975)

Let S be a smooth compact hypersurface in R" with non vanishing

Gaussian curvature at every point, and let do be a smooth measure on
S. Then

1F(F) 5l 25,00y < Coll Fllurrn) -
for every f € §(R") and every p < (2n+2)/(n + 3),

m A similar result is possible for surfaces with vanishing Gaussian
curvature (that are not flat).

m In this case the range of p is smaller depending on the order of
tangency of the surface to its tangent space.

m The assumption about compactness of S can be removed by
replacing do with a compactly supported smooth measure.

S



Equivalent to the continuity from LP(R") to LP' (R") of the operator

RiRsf = f %G (12)

IFENsl gy = [ (F* 8)ax < 1F 5y |

Recall that the Fourier transform of the measure do is a function given by
(&) = / e*Sdo(x) (13)

|
Let S be a smooth compact hypersurfaces with non-zero Gaussian
curvature at every point. Then

n—1

()] < C(L+1¢) 2 (14)

S




some comments

Let S be a smooth compact hypersurfaces with non-zero Gaussian
curvature at every point. Then

_n-1
2

[5(&)] < C(1+€])

m only with decay one only gets p < =22 (Fefferman, Stein)

3n+1
=N sin(27|x
n=3, 0(5):27( x)

x|

m using a dyadic decomposition and real interpolation p < 2(”":31)
(Tomas)
. . . _ 2(n+1) .

m with complex interpolation p = == (Stein)

S



From restriction to Strichartz estimates

The classical Schrodinger equation in R": taking the inverse Fourier
transform

u(t x) = / e/ €IS g () de (16)

Consider the paraboloid Sin the space of frequencies R =R xR"

~

5:{(a,5)e@x@"|a:\g|2}.

|
m Given G : R” — C define g : 5 — C as g(|¢]2,€) = Go(€). Then

u(t, x) :/ iCegttie) &)d¢ = / Vzg(z)do(z

where y = (t,x) and z = («, &).

S o
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Geometric interpretation e

m Let us endow S with the measure do = dé€.

— do is not the intrinsic surface measure of S, which is

du = /14 2[¢|d€.

W)

(
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The Fourier restriction theorem

15 (80) oy < Co lllags (a7)
for all g € L2(5,dp) and all p’ > 2(n+2)/n.

By construction HgHLZ(;dH) = HﬁoHLz(@n) = ||uol| 2(rny

— we stress that we apply the result in dimension n+ 1, i.e., in
R x R" = R™!

|
Applying the statement to g related to a initial data ug such that wg is
supported on a unit ball

l[ull o o1y < Clluol| 2qny » (18)
for all p’ > 2(n—+ 2)/n.

A scaling argument and the density of spectrally localized functions
in L2(R"), give the result for p’ =2 + 4,
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Some difficulties ([lf8 s

1. Prove a Fourier restriction on the Heisenberg group
m a result of D.Miiller — specific for the sphere
m what is the sphere? what about paraboloid?

2. We do not exactly need restriction theorems for H¢
m we applied the result to a surface in the space R™! = R x R”
— the paraboloid for the Schrodinger eq. (the cone for the wave
equation).
m when dealing with equations defined on the Heisenberg group H,

one is naturally lead to consider surfaces in the space R x He, wh|ch
is not related to HY for some d".

S o



Chapter 4: Strichartz estimates in the Heisenberg group
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A function ¢ on H* is said to be radial if ¢(x,y,z) = ¢(x* + y?, z).
Theorem (Bahouri, DB, Gallagher, '21)

Given (p, q) belonging to the admissible set

2 2d
AZ{(p,q)E[Zoo]z/qu and Gt = g}

the solution to the Schrodinger equation (Sm) with radial data satisfies
||“||Lz°°LfL§,y < Cp,q,p1,q1 (HUOHLZ(HG’)) .
m restrictive due to p < q. Indeed p =g = 2.

m we stress that L° L{ LP  # L° LI L7,

m similar for inhomogeneous and wave

S e



The result sy

A function ¢ on H* is said to be radial if ¢(x,y,z) = ¢(x* + y?, z).

Theorem (Bahouri, DB, Gallagher, '21)

Given (p, q) belonging to the admissible set

2 2d _Q
_ 2 z
A—{(p,q)E[Z,OO] /p<q and q+p§2},

the solution to the Schrodinger equation (Sg) with radial data satisfies

||U||LgoL;7L5,y < Cp,q,pl,ql(||UOHHU(Hd)) .
mo=9-2_ % is the loss of derivatives, 0 = 0 forces p = g
m we stress that L° L{ LP  # L° LI L7,

m similar for inhomogeneous and wave




The reSUIt DI PADOVA

A function ¢ on H is said to be radial if ¢(z,s) = f(|z|,s).
Theorem (Bahouri, DB, Gallagher, '21)
Given (p, q) and (p1, q1) belonging to the admissible set

2 2d Q@
_ 2 z
A—{(p,q)6[27001/q§p and q+p 32}’

the solution to the Schrédinger equation (Sg) with radial data satisfies

lullize 512 < Couauprsan (16l iy + 1F ligrie ) -

S o



The Fourier transform on H st

It is defined using irreducible unitary representations : for any integrable
function u on H (Kirillov theory)

YAER*, 1)) ::/u(x)fR;\dx,
H

with R* the group homomorphism between H and the unitary
group U(L2(R)) of L2(R) given for all x in H and ¢ in L2(R), by

RAH(6) = exp (i)\Xg + /'/\sz)gb(a +x1).

Then G()) is a family of bounded operators on L?(IR), with many
properties similar to RY : inversion formula, Fourier-Plancherel identity

Trace Hilbert—Schmidt

S



The Fourier transform of the sublaplacian on

The sub-Laplacian
Ay =X + X5

There holds

— R ] d?
—Agu(A) =0(N) o Py, with Py := i + 2202
The spectrum of the rescaled harmonic oscillator is
Sp(Py) = {|A\l(2m+ 1), m € N}

and the eigenfunctions are the Hermite functions .. So for all m € N,

“Agu(A) = En(Na(N)) -

S o
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The frequency space on H e

Set x := (n,m,\) € H = N2 x R*, and

Fr(u)(n, m,A) = (@A) UR) )

W(X, x)u(x)dx
H

where W(X, x) := eMee=N0EH2) [ (21N (x2 + x2)) .

Laguerre polynomial

Then

Fu(—Agu)(n,m, ) = En(\) Fu(u)(n,m,A).
——
frequency

Bahouri, Chemin, Danchin

T o
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Some formulas

Inversion and Fourier-Plancherel formulae

2471 - N~
f(x) = a1 /ﬁd W(X, x)Fuf(X) dx

and
d+1

(Fuf|Tug) 2oy = %(ﬂgh?(md),
Action of the Laplacian
Fu(Buf)(x) = —4A(2m[ + d)Fu(f)(X).
Radial functions f(z,s) = f(|z],s)
Fu(F)(n, m, A) = Fu(F)(n, m, X)onm = Fu(F)(In], [n|, A)dnm -
Convolution for radial functions

Fu(f g)(l, 0, \) = Fuf (£, 0, \)Fug(l.L




UNIVERSITA

Strichartz estimate in the Heisenberg gro

Let up in 8(HY) be radial and consider the Cauchy problem

iO:u— Agu =20
U|t:0 = Ug .

Taking the partial Fourier transform with respect to the variable w

i F(u)(t, n,m,\) = —4[A|(2|m| + d)Fu(u)(t,n, m, \)
H:H(U)\tzo = H:HUO .

]
Fu(u)(t,n,m,\) = e4it|)“(2|m‘+d)3"H(uo)(|n|, [n, A)dn.m .

— Notice that if we set |m| = 0 we see the “transport” part

Fa(u)(t,0,0,)) = e*M9F(1)(0,0, ).




Applying the inverse Fourier formula

(6,2, = Zomr [ W(E,2.9) ¥ i), I, N 05

Re-expressed as the inverse Fourier transform in R x H? of Fn(uo) dZ,
£ E{(0,%) = (o, (0,0, V) € Rx HY /o = 4]2|(2]n] + d) }.
endow X with the measure d¥ induced by the projection R x Hd — He

/;Cb(oz,)?) d¥(a, X) :/; S(41M(2|m| + d), %) dX,
JD e

Theorem (Bahouri, DB, Gallagher, '19)
If1 < q<p<2, then for f radial

|Faxae(Nlzllz@x) < G,




Using dual inequality, assuming that Fguyg is localized in the unit ball

|
Forany2 < p<g <o

||U||LgoL;7L'; < C||3"HU0||Lz(ﬁd) = CHUOHB(H")y

m If ug is frequency localized in the ball Ba,

un(t,z,8) = u(N"2t, A1z, A"%s) uoA(z,8) = up(A "z, A25)

m we have
2,2 Q
HUAHLchng =A% ”U”L?LfL’Z’: HUO,/\HLZ(Hd) =Nz HU0||L2(Hd) )

m we infer
2_2d

Q_ d
[ull oo rare < CAZ 757 [Juo | 2(saey -

S o
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