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Chapter 3: The Fourier restriction problem
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Back to Schrödinger

Given a solution u(t, x) of the classical Schrödinger equation (S) in Rn{
i∂tu −∆u = 0
u|t=0 = u0 ,

the Fourier transform û(t, ξ) with respect to the spatial variable x
satisfies

i∂t û(t, ξ) = −|ξ|2û(t, ξ), û(0, ξ) = û0(ξ). (1)

Solving the corresponding ODE and taking the inverse Fourier transform

u(t, x) =

∫
R̂n

e i(x·ξ+t|ξ|2)û0(ξ)dξ . (2)
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Another viewpoint

One can also interpreted as the inverse Fourier transform of a data on
the paraboloid Ŝ in the space of frequencies

u(t, x) =

∫
Rn

e i(x·ξ+t|ξ|2)û0(ξ)dξ =

∫
Ŝ

e iy ·zg(z)dσ(z)

where R̂n+1 = R̂× R̂n, defined as

Ŝ
def
=

{
(α, ξ) ∈ R̂× R̂n | α = |ξ|2

}
.

where y = (t, x) and z = (α, ξ)

∥u∥Lp′ (Rn+1) = ∥F−1(gdσ)∥Lp′ (Rn+1)

4 of 32



Geometric interpretation

Let us endow Ŝ with the measure dσ = dξ.

→ dσ is not the intrinsic surface measure of Ŝ , which is
dµ =

√
1 + 2|ξ|dξ.
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The original approach of Strichartz, 1977
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Strichartz says
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Fourier restriction

A lot of contributors: Stein, Fefferman, Tomas, etc.

Problem: Can we restrict Fourier transform of Lp functions to subsets ?

f in L1(Rn) implies F(f ) continuous → OK.

f in L2(Rn) implies F(f ) in L2(R̂n) → arbitrary on a zero meas

set Ŝ of R̂n.

what happens for 1 < p < 2?

it depends on the surface!

if the surface is “flat” we cannot do a lot
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First observation

→ The Fourier transform of a Lp function, for any p > 1, cannot be
restricted to hyperplanes.

This f belongs to Lp(Rn), for all p > 1

f (x) =
e−|x′|2

1 + |x1|
x = (x1, x

′) ∈ Rn, (3)

its Fourier transform does not admit a restriction on Ŝ = {ξ1 = 0}.

f̂ (0, ξ′) =

∫
Rn

e−ix′·ξ′ e−|x′|2

1 + |x1|
dx1dx

′

→ what happens for different surfaces?
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The statement

Tomas and Stein

One can restrict the Fourier transform of Lp(Rn) functions, for p > 1

(close to 1), to hypersurfaces Ŝ that are “sufficiently curved”, (main
example: the sphere).

Let us state more formally the questions

Problem: given a hypersurface Ŝ ⊂ R̂n endowed with a smooth measure
dσ, the restriction problem asks for which pairs (p, q) an inequality of
the form

∥F(f )|Ŝ∥Lq(Ŝ,dσ) ≤ C∥f ∥Lp(Rn) (4)

holds for all f in S(Rn).
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Dual approach

The operator RS is continuous from Lp(Rn) to Lq(Ŝ , dσ)?

RS f = F(f )|Ŝ

→ not completely settled in its general form

from now on

we focus on the case q = 2

the adjoint operator R∗
S is continuous from L2(Ŝ , dσ) to Lp

′
(Rn)?

R∗
Sg = F−1(gdσ)

∥F−1(gdσ)∥Lp′ (Rn) ≤ C∥g∥L2(Ŝ,dσ) (5)
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the case q = 2

A basic counterexample shows that the range of p for which the estimate
holds cannot be the entire interval 1 ≤ p ≤ 2;

Example (Knapp)

Let Ŝ be the (n− 1)-dimensional sphere in R̂n endowed with the standard

measure dµ. The estimate can hold only if p ≤ 2n + 2

n + 3
= 2− 4

n + 3
.

Consider the equivalent formulation of the estimate

∥ĝσ∥Lp′ (Rn) ≤ C∥g∥L2(Sn−1) (6)

Let δ > 0 and let gδ be the characteristic function “spherical cap”

Ĉδ = {x ∈ Ŝ : |x · en| < δ} .
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Proof of Knapp, I

We consider the equivalent formulation of estimate

∥ĝσ∥Lp′ (Rn) ≤ C∥g∥L2(Sn−1) (7)

Let δ > 0 be small and let gδ be the characteristic function on Cδ.

|Cδ| ∼ δn−1. This implies ∥gδ∥L2(Sn−1) ∼ δ(n−1)/2.

If x ∈ Rn is orthogonal to the vertical direction

|ĝδσ(x)| =
∣∣∣∣∫

Sn−1

e ix·ξgδ(ξ)dσ(ξ)

∣∣∣∣ = ∣∣∣∣∫
Cδ

e ix·ξdσ(ξ)

∣∣∣∣ ∼ |Cδ| ∼ δn−1.

∥ĝδσ∥Lp′ (Rn) =

(∫
Rn

|ĝσ(x)|p
′
dx

)1/p′
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Geometric interpretation

let Tδ be the tube in the x space oriented orthogonally to the sphere

[−δ−1, δ−1]× . . .× [−δ−1, δ−1]× [−δ−2, δ−2]

|Tδ| ∼ δ−n−1.
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Proof of Knapp, II

For x in Tδ and δ very small the quantity x · ξ is almost zero for
ξ ∈ Cδ.

∥ĝδσ∥Lp′ (Rn) =

(∫
Rn

|ĝσ(x)|p
′
dx

)1/p′

(8)

≥
(∫

Tδ

|ĝσ(x)|p
′
dx

)1/p′

(9)

∼
(∫

Tδ

δ(n−1)p′
dx

)1/p′

(10)

∼ δ(n−1)|Tδ|1/p
′
∼ δ(n−1)δ(−n−1)/p′

(11)

The estimate can hence be valid only if (the inequality is ≥ since
δ → 0)

n − 1− n + 1

p′
≥ n − 1

2

which is the conclusion.
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Tomas-Stein

The above range is indeed the correct one for non vanishing curvature.

Theorem (Tomas-Stein, 1975)

Let Ŝ be a smooth compact hypersurface in R̂n with non vanishing
Gaussian curvature at every point, and let dσ be a smooth measure on
Ŝ. Then

∥F(f )|Ŝ∥L2(Ŝ,dσ) ≤ Cp∥f ∥Lp(Rn) .

for every f ∈ S(Rn) and every p ≤ (2n + 2)/(n + 3),

A similar result is possible for surfaces with vanishing Gaussian
curvature (that are not flat).

In this case the range of p is smaller depending on the order of
tangency of the surface to its tangent space.

The assumption about compactness of Ŝ can be removed by
replacing dσ with a compactly supported smooth measure.
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Equivalent to the continuity from Lp(Rn) to Lp
′
(Rn) of the operator

R∗
SRS f = f ∗ σ̂ (12)

∥F(f )|Ŝ∥
2
L2(Ŝ,dσ)

=

∫
(f ∗ σ̂)fdx ≤ ∥f ∗ σ̂∥Lp′ (Rn)∥f ∥Lp(Rn)

Recall that the Fourier transform of the measure dσ is a function given by

σ̂(ξ) =

∫
Rn

e ix·ξdσ(x) (13)

Let S be a smooth compact hypersurfaces with non-zero Gaussian
curvature at every point. Then

|σ̂(ξ)| ≤ C (1 + |ξ|)−
n−1
2 (14)
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some comments

Let S be a smooth compact hypersurfaces with non-zero Gaussian
curvature at every point. Then

|σ̂(ξ)| ≤ C (1 + |ξ|)−
n−1
2 (15)

only with decay one only gets p ≤ 4n
3n+1 (Fefferman, Stein)

n = 3, σ̂(ξ) = 2
sin(2π|x |)

|x |

using a dyadic decomposition and real interpolation p < 2(n+1)
n+3

(Tomas)

with complex interpolation p = 2(n+1)
n+3 (Stein)
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From restriction to Strichartz estimates

The classical Schrödinger equation in Rn: taking the inverse Fourier
transform

u(t, x) =

∫
R̂n

e i(x·ξ+t|ξ|2)û0(ξ)dξ . (16)

Consider the paraboloid Ŝ in the space of frequencies R̂n+1 = R̂× R̂n

Ŝ =
{
(α, ξ) ∈ R̂× R̂n | α = |ξ|2

}
.

Given û0 : R̂n → C define g : Ŝ → C as g(|ξ|2, ξ) = û0(ξ). Then

u(t, x) =

∫
Rn

e i(x·ξ+t|ξ|2)û0(ξ)dξ =

∫
Ŝ

e iy ·zg(z)dσ(z)

where y = (t, x) and z = (α, ξ).
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Geometric interpretation

Let us endow Ŝ with the measure dσ = dξ.

→ dσ is not the intrinsic surface measure of Ŝ , which is
dµ =

√
1 + 2|ξ|dξ.
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The Fourier restriction theorem

∥F−1(gdσ)∥Lp′ (R̂n+1) ≤ Cp ∥g∥L2(Ŝ,dµ) , (17)

for all g ∈ L2(Ŝ , dµ) and all p′ ≥ 2(n + 2)/n.

By construction ∥g∥L2(Ŝ,dµ) = ∥û0∥L2(R̂n) = ∥u0∥L2(Rn)

→ we stress that we apply the result in dimension n + 1, i.e., in
R× Rn = Rn+1

Applying the statement to g related to a initial data u0 such that û0 is
supported on a unit ball

∥u∥Lp′ (Rn+1) ≤ C∥u0∥L2(Rn) , (18)

for all p′ ≥ 2(n + 2)/n.

A scaling argument and the density of spectrally localized functions
in L2(Rn), give the result for p′ = 2 + 4

n . and all u0 ∈ L2(Rn)
21 of 32



Some difficulties

1. Prove a Fourier restriction on the Heisenberg group

a result of D.Müller → specific for the sphere

what is the sphere? what about paraboloid?

2. We do not exactly need restriction theorems for Hd

we applied the result to a surface in the space Rn+1 = R× Rn

→ the paraboloid for the Schrödinger eq. (the cone for the wave
equation).

when dealing with equations defined on the Heisenberg group Hd ,
one is naturally lead to consider surfaces in the space R̂× Ĥd , which
is not related to Hd′

for some d ′.
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Chapter 4: Strichartz estimates in the Heisenberg group
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The result

A function ϕ on H1 is said to be radial if ϕ(x , y , z) = ϕ(x2 + y2, z).

Theorem (Bahouri, DB, Gallagher, ’21)

Given (p, q) belonging to the admissible set

A =
{
(p, q) ∈ [2,∞]2 / p ≤ q and

2

q
+

2d

p
=

Q

2

}
,

the solution to the Schrödinger equation (SH) with radial data satisfies

∥u∥L∞
z Lq

t L
p
x,y

≤ Cp,q,p1,q1

(
∥u0∥L2(Hd )

)
.

restrictive due to p ≤ q. Indeed p = q = 2.

we stress that L∞z Lqt Lpx,y ̸= L∞t Lqz Lpx,y
similar for inhomogeneous and wave
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The result

A function ϕ on H1 is said to be radial if ϕ(x , y , z) = ϕ(x2 + y2, z).

Theorem (Bahouri, DB, Gallagher, ’21)

Given (p, q) belonging to the admissible set

A =
{
(p, q) ∈ [2,∞]2 / p ≤ q and

2

q
+

2d

p
≤ Q

2

}
,

the solution to the Schrödinger equation (SH) with radial data satisfies

∥u∥L∞
z Lq

t L
p
x,y

≤ Cp,q,p1,q1

(
∥u0∥Hσ(Hd )

)
.

σ = Q
2 − 2

q − 2d
p is the loss of derivatives, σ = 0 forces p = q

we stress that L∞z Lqt Lpx,y ̸= L∞t Lqz Lpx,y
similar for inhomogeneous and wave
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The result

A function ϕ on Hd is said to be radial if ϕ(z , s) = f (|z |, s).

Theorem (Bahouri, DB, Gallagher, ’21)

Given (p, q) and (p1, q1) belonging to the admissible set

A =
{
(p, q) ∈ [2,∞]2 / q ≤ p and

2

q
+

2d

p
≤ Q

2

}
,

the solution to the Schrödinger equation (SH) with radial data satisfies

∥u∥L∞
s Lq

t L
p
z
≤ Cp,q,p1,q1

(
∥u0∥Hσ(Hd ) + ∥f ∥L1

tH
σ(Hd )

)
.
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The Fourier transform on H

It is defined using irreducible unitary representations : for any integrable
function u on H (Kirillov theory)

∀λ ∈ R∗ , û(λ) :=

∫
H
u(x)Rλ

x dx ,

with Rλ the group homomorphism between H and the unitary
group U(L2(R)) of L2(R) given for all x in H and ϕ in L2(R), by

Rλ
x ϕ(θ) := exp

(
iλx3 + iλθx2

)
ϕ(θ + x1) .

Then û(λ) is a family of bounded operators on L2(R), with many
properties similar to Rd : inversion formula︸ ︷︷ ︸

Trace

, Fourier-Plancherel identity︸ ︷︷ ︸
Hilbert−Schmidt
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The Fourier transform of the sublaplacian on H

The sub-Laplacian
∆H = X 2

1 + X 2
2

There holds

−̂∆Hu(λ) = û(λ) ◦ Pλ , with Pλ := − d2

dθ2
+ λ2θ2 .

The spectrum of the rescaled harmonic oscillator is

Sp(Pλ) =
{
|λ|(2m + 1) ,m ∈ N

}
and the eigenfunctions are the Hermite functions ψλ

m. So for all m ∈ N,

−̂∆Hu(λ)ψ
λ
m = Em(λ)û(λ)ψ

λ
m .
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The frequency space on H

Set x̂ := (n,m, λ) ∈ Ĥ = N2 × R∗, and

FH(u)(n,m, λ) := (û(λ)ψλ
m|ψλ

n )L2(R)

=

∫
H
W(x̂ , x)u(x)dx

where W(x̂ , x) := e iλx3e−|λ|(x2
1+x2

2 ) Lm(2|λ|(x21 + x22 ))︸ ︷︷ ︸
Laguerre polynomial

.

Then
FH(−∆Hu)(n,m, λ) = Em(λ)︸ ︷︷ ︸

frequency

FH(u)(n,m, λ) .

Bahouri, Chemin, Danchin
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Some formulas

Inversion and Fourier-Plancherel formulae

f (x̂) =
2d−1

πd+1

∫
H̃d

W(x̂ , x)FHf (x̂) dx̂

and

(FHf |FHg)L2(H̃d ) =
πd+1

2d−1
(f |g)L2(Hd ) ,

Action of the Laplacian

FH(∆Hf )(x̂) = −4|λ|(2|m|+ d)FH(f )(x̂) .

Radial functions f (z , s) = f (|z |, s)

FH(f )(n,m, λ) = FH(f )(n,m, λ)δn,m = FH(f )(|n|, |n|, λ)δn,m .

Convolution for radial functions

FH(f ⋆ g)(ℓ, ℓ, λ) = FHf (ℓ, ℓ, λ)FHg(ℓ, ℓ, λ) .
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Strichartz estimate in the Heisenberg group

Let u0 in S(Hd) be radial and consider the Cauchy problem{
i∂tu −∆Hu = 0

u|t=0 = u0 .

Taking the partial Fourier transform with respect to the variable w{
i d
dtFH(u)(t, n,m, λ) = −4|λ|(2|m|+ d)FH(u)(t, n,m, λ)

FH(u)|t=0 = FHu0 .

FH(u)(t, n,m, λ) = e4it|λ|(2|m|+d)FH(u0)(|n|, |n|, λ)δn,m .

→ Notice that if we set |m| = 0 we see the “transport” part

FH(u)(t, 0, 0, λ) = e4it|λ|dFH(u0)(0, 0, λ) .
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Applying the inverse Fourier formula

u(t, z , s) =
2d−1

πd+1

∫
Ĥd

W(x̂ , z , s) e4it|λ|(2|m|+d) FH(u0)(|n|, |n|, λ)δn,m dx̂ .

Re-expressed as the inverse Fourier transform in R̂× Ĥd of FH(u0) dΣ,

Σ
def
=

{
(α, x̂) =

(
α, (n, n, λ)

)
∈ R̂× Ĥd /α = 4|λ|(2|n|+ d)

}
.

endow Σ with the measure dΣ induced by the projection R̂× Ĥd → Ĥd∫
D̂
Φ(α, x̂) dΣ(α, x̂) =

∫
Ĥd

Φ(4|λ|(2|m|+ d), x̂) dx̂ ,

Theorem (Bahouri, DB, Gallagher, ’19)

If 1 ≤ q ≤ p ≤ 2, then for f radial

∥FR̂×Ĥd (f )|Σ∥L2(dΣ) ≤ Cp,q∥f ∥L1
sL

q
t L

p
z
, (19)

31 of 32



Using dual inequality, assuming that FHu0 is localized in the unit ball

For any 2 ≤ p ≤ q ≤ ∞

∥u∥L∞
s Lq

t L
p
z
≤ C∥FHu0∥L2(Ĥd ) = C∥u0∥L2(Hd ) ,

If u0 is frequency localized in the ball BΛ,

uΛ(t, z , s) = u(Λ−2t,Λ−1z ,Λ−2s), u0,Λ(z , s) = u0(Λ
−1z ,Λ−2s)

we have

∥uΛ∥L∞
s Lq

t L
p
z
= Λ

2
q+

2d
p ∥u∥L∞

s Lq
t L

p
z
, ∥u0,Λ∥L2(Hd ) = Λ

Q
2 ∥u0∥L2(Hd ) ,

we infer
∥u∥L∞

s Lq
t L

p
z
≤ CΛ

Q
2 −

2
q−

2d
p ∥u0∥L2(Hd ) .
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