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Strichartz estimate in the Heisenberg gro

Let up in 8(HY) be radial and consider the Cauchy problem

iO:u— Agu =20
U|t:0 = Ug .

Taking the partial Fourier transform with respect to the variable w

i F(u)(t, n,m,\) = —4[A|(2|m| + d)Fu(u)(t,n, m, \)
H:H(U)\tzo = H:HUO .

]
Fu(u)(t,n,m,\) = e4it|)“(2|m‘+d)3"H(uo)(|n|, [n, A)dn.m .

— Notice that if we set |m| = 0 we see the “transport” part

Fa(u)(t,0,0,)) = e*M9F(1)(0,0, ).




Applying the inverse Fourier formula

u(t,2,9) = Zomr [ W(E,2.9) ¥ i), I, N 5

Re-expressed as the inverse Fourier transform in R x HY of Fu(uo) dX,
— {(a,?) = (o, (n,n,\)) € R x HY / o = 4||(2n] + d)} .
endow ¥ with the measure d¥ induced by the projection R x HY — HY

/5»@,;) dZ(a,?):[ O(4]\|(2]m] + d), ) d5,
D J Hd

Theorem (Bahouri, DB, Gallagher, '21)
If1 < q<p<2, then for f radial

1 Frxme (F)Isll2(as) < Cogll fllireaee s 1




Using dual inequality, assuming that Fug is localized in the unit bali

|
Forany2 < p<g< o

lullpeerare < ClIFmuoll 2 ey = Clluoll 2 (e
g (H7)

m If ug is frequency localized in the ball By,

un(t,z,s) = u(A2t,A"1z, A=25s), uoA(z,5) = up(A "1z, A725)
m we have
2 2d Q
lunll oo oz = A7 ||ul oo 302, (| uo.all 2oy = A2 || ol| ey »
m we inferforazg—g—ﬁ
a P

Q_2_2d
ull oo rare < CAZ7 a7 % |luo | 2oy < Clluoll o (e -

S e
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The inhomogeneous case (L5 s

m Denoting by (U(t)):cr the solution operator of the Schrodinger
equation on the Heisenberg group,

m (U(t))eer is a one-parameter group of unitary operators on L2(H?).

m the solution to the inhomogeneous equation

{ iO:u— Agu=f
u\tzo - 07

writes

u(t,) = —i/o. Ut — ¢)f(t',-)dt’, (2)

It is enough to check that it satisfies, for all admissible pairs (p, q) ,

ull oo rare S NFll 2 pe o) (3)




By formula of the solution, we have for all s € R,

lu(e, )]s < / IUENU(—E)F(E )l ot
m Therefore, still for all s,
oo iz < | ROUEIE )l

m Let us first assume that, for all t, the source term f(t,-) is frequency
localized in in the unit ball By

if g is frequency localized in a unit ball, then for all 2 < p < g <

[U(t)gll oo roe S N8l 2quey - (4)

T



By formula of the solution, we have for all s € R,

lu(e, )]s < / IUENU(—E)F(E )l ot
m Therefore, still for all s,
oo iz < | ROUEIE )l

m Let us first assume that, for all t, the source term f(t,-) is frequency
localized in in the unit ball By

if g is frequency localized in a unit ball, then for all 2 < p < g <

(el stz S gz - (5)

T e



m Using homog Strichartz, we deduce that

élﬂgséﬂuefvucwmmqmﬂ

m Since U(—t') is unitary on L2(H), we readily gather that

lollgrses < [ IFCE gy (6

m Now if for all ¢, f(t,-) is frequency localized in a ball of size A, then

setting
def

fa(t,) = A2F(A"t,-) 0 p
m we find that on the one hand, fA(t,-) is frequency localized in a unit
ball for all t, and on the other hand that the solution to the Cauchy
problem
{ I'atU/\ — AHU/\ = f/\
Ujt=0 = 07

writes up(t, w) = u(A72t,-) o dp-1 .



Now by scale invariance, we have

/Wa Wiz e’ = A /w ez

2,2
HUAHLch?L‘; = Nat HUHLgoLfL”Y-

and

Consequently, we get

2

Jollgerses < € [ A3 F A Yooyt

2 2d
Slnceg—f——>0 we have

q p

Q_2_2

AT, i S I g2 s

H2 ™ a~ p (HY)

and then integrate in t to conclude

T o
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Fourier restriction s S

The statement

Theorem (Bahouri, DB, Gallagher, '21)

If1 < q<p<2, then for f radial

| Fxcme (Flsl2(asy < Coqllfllireoce s (7)

and its dual version

for any 2 < p’ < ¢’ < oo, there holds

H Hd( \ZloC)HLoo[_q /_P/ < ||9|ZIOC||L2(dZIOC)’ (8)

S s
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The completion of the frequency set Ly

m The frequency set H comes with a measure

d?d—ef/ S 6(n,mA)A[¢ dA.

(n,m)eN2d

m endowed with a distance
d(=, %) C A (- m) =N (0 +m')| o+ | (n—m) (0 =) s +d | A=,

m (HY, d) it is not complete [—] build the metric completion He

Some advantages of [Bahouri, Chemin, Danchin]

m definition of $(H),
m interpretation smoothness <> decay
— give a meaning to the unit sphere Sz, of H.

T
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On the surface measure e

Recall that for 6 being the Fourier transform of a radial function

[0z~ [ 3 o(nn 2 dn.

neNd

For spherical measures (on sphere of radius R) we want

'/H;{d O(xX)dx = /Ox </S 6‘()?)daR(>?)> dR

So we have (change of variable R? = (2|n| + d)|)|)
R R 2 R2d+1 +R2
[ 00)dor(®) = 3 i (zi:@(n, " S d )

Hd neNd

S s
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On the surface measure, R =1

Recall that for 6 Fourier transform of radial function

e dx—/ZGnn/\|/\\dd)\

neNd
For spherical measures (on sphere of radius R) we want

/ﬁ e(?)d?—/jo (l 0(X)dor(X )) dR

H

So we have (change of variable R? = (2|n| + d)|)\|)

' - ~ 2 +1
/S»d O(x)doi(x) = nesz QT 97 (g@(n, n, S+ d d)>

H!

S
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The result of Muller (15 oS

m D.Miiller [Annals of Math, 1990]: works in terms of spectral
decomposition

L:/ AE()), PF=f*G
0

m proves the estimate (“restriction for the sphere”): if 1 < p <2

[ Gt e (S len 5 )] < Sl

neNd

m can be reinterpreted as follows: If 1 < p < 2, then for radial

ng]]{(f)\g—;rd

‘LQ(Syﬁd) = CPHfHLgLﬁ-, (9)

— valid on the full interval: for p € [1,2]

— crucial: the anisotropic norm LLLP (r = 1 is necessary in vertical)

m false for p > 2 —
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Fourier transform of the surface measure

Up to a measure zero set on A
S5 = {(n.n.0) € B 2lnl + ) = 1)

By definition, the tempered distribution G = ?ﬁl(dogﬁd)

Lemma
G is the bounded function on HY defined by

G(z,s) = Z Z ! cos( ° )W(n n,1 ;)
ST R L [+ AT 2+ d) N Al d
(10)
For the sphere of radius R/2 we have the homogeneity property:
Gr(z,5) L RUG 06 z)(z,5). (11)

T
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Measure On the parab0|0|d DEGLI STUDI

DI PADOVA

Proceeding as for the restriction theorem on the sphere of ﬁd, let us first
compute

def
Gzloc = j@iﬂd(dzlo(‘r)'

Lemma

With the above notation, Gs,._ is the bounded function on R x ¢
defined by

Gy, .(t,w) =2m /000 Go(w) e () da, (12)

where Gg is the inverse Fourier of the measure of sphere of radius R/2.

This gives for all f in 8,.q4(D)

m\ 9 o
(R, Ren)(8.2:5) = (5) (GoxF)(—t.=2z5),  (19)

T



Reduction to the estimate on convolution

Consider the restriction operator
Rzlocf = SFRXH"('C)\LOC
Indeed applying the Holder inequality, we deduce that

H Rzloc f

%2(21.)6) < HR)EOC RzloufHL;XJL?/L;://||fHL£L?L€,

< Hf*'D Gzloc

L?CLf/L‘\’,/”f Lges,

Then as in the Euclidean case, we are reduced to proving that
Rf, Rs,. is bounded from LLL{LE into L°LY LE'.

S s



Proof for 1 < p < 2 (non endpoint)

Main lemma

_2
15 Gl i S ||1F2(F) (=0 gz ™7 (a)

L3

m Holder estimate in o + Hausdorff-Young inequality: for any a > 2

d(1-=2
L e |la? ) ()]

2
7

d(1
e 0@ B(0) s )

[ * Gg,,. S 1F=(f)

/ /
||ocq P~
LoL9 18

S I

Lb

o

where 2’ is the conjugate exponent of aand % + ; = %7-

m Finally for 8 = g and Minkowski's inequality, we get for ¢’ > p’ > 2

H fx GZ]()(:

Loo L?l Lf/ 5 || fHL%Lng

— endpoint p = 2: ad hoc argument —



Chapter 5: Kirillov Theory for Nilpotent groups
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Representations and basic tools kg

Here V is a vector space finite or infinite dimensional.

m Given a Lie group G a representation of G is a smooth
homomorphism

R:G— GL(V), R(g182) = R(g1)R(g2)

where in the left hand side we have the product in G while in the
right hand side the composition in GL(V).

m A subspace W of V is an invariant subspace if R(g)w € W for all
g€ Gand we W.

m The representation is said to be irreducible if the only invariant
subspaces of V are the zero space and V itself.

T s
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Important 1D unitary representations e

m if R map into the group of unitary operators, we say unitary
representation .

m The representation is said one-dimensional if V' has dimension 1.

m For V = C, a 1-dim representation of G will be a smooth

homomorphism
X:G— UC)=5!

m Let G nilpotent, n € g* and H C G be such that n([h,h]) =0 :
we can define the one-dimensional representation

X, : H— S'=U(C)

X, (eX) = /™%, X eh.

where as usual (1, X) denotes the duality product g* and g.

T s



Kirillov theory

The Kirillov theory gives a way to describe all possible irreducible unitary
representations of G in terms of coadjoint orbits of the group.
An algorithm in four steps:

Fix an element n € g*.

Fix any maximal Lie subalgebra b of g s.t. n([h,h]) = 0.

Consider the one-dimensional representation
Xy o H— S'=U(C)

X,p.5(eX) = e/ nX)] X eb.
where as usual (1, X) denotes the duality product g* and g.

A Compute the induced representation R, : G — U(W).
— a way to lift a representation to the group G

S s
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Coadjoint orbits (L5 s

Given a Lie group G
m the conjugation map C, : G — G given by Cz(h) = ghg™*.

m the adjoint action of G onto its Lie algebra
Adg :g— g, Ad, = (Gg)-

m Notice that Ad : G — GL(g) given by g — Ad, is a finite
dimensional representation of G.

m This induces the so called coadjoint action dual of the above
Ad g =g, (Adin,v) = (n, (Adg).v)

m Notice that Ad”™ is indeed an action of G on g*. Given 1 € g* the
coadjoint orbit of 1 is by definition the set

0, ={Adgn | g € G}.

S e



Kirillov theorem

7 DI PADOVA

The Kirillov theorem states the following:

The map which assigns ton € g*/G to R,y in G (where by is some
maximal Lie subalgebra) is a bijection. More precisely:

(a) every irreducible unitary representation of a nilpotent Lie group G is
of the form R, , for some ) and H

(b) two representations R,y and R,y are equivalent if and only if
and i’ belong to the same orbit.

Here two irreducible unitary representations Ry : G — U(W;) and
Ry : G — U(W,) are equivalent if there exists an isometry between the
Hilbert spaces T : Wy — W, such that

ToRi(g)o T = Rx(g), VgeG

T s



Kirillov theory

The Kirillov theory gives a way to describe all possible irreducible unitary
representations of G in terms of coadjoint orbits of the group.
An algorithm in four steps:

Fix an element n € g* in every leaf

Fix any maximal Lie subalgebra b of g s.t. n([h,h]) = 0.

Consider the one-dimensional representation
Xy o H— S'=U(C)

X,p.5(eX) = e/ nX)] X eb.
where as usual (1, X) denotes the duality product g* and g.

A Compute the induced representation R, : G — U(W).
— a way to lift a representation to the group G

S
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Poisson structure on the dual g* kg

Let a,b: g* — R be smooth functions.

m Poisson manifold with the bracket

{a, b}(n) = (n, [da, db])

m Given a smooth a: g* — R we can define its Poisson vector field by
setting for every smooth b: g* — R

a(b) = {a, b}
m The set of all Poisson vector at a point defines a distribution

Dy ={an) | ae C=(g")}

which has no constant rank (notice Dy = {0}).

S



POisson Orbit DI PADOVA

We can define also the Poisson orbit of 7 € g* in the sense of dynamical
systems as follows

OF ={e"¥o.. .0e"(n) | LeN,t; €R,a € C™(g")}.
Notice that both 05 and O, are subsets of g* containing 7.

Proposition

For every n € g* we have the equality O,’; = 0O,,. Each orbit is an even
dimensional symplectic manifold.

It is enough to use as a; the linear on fibers function associated to a basis

hi(p, x) = p- Xi(x)

S
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Computation of coadjoint orbits "

Fix a basis of the Lie algebra Xi, ..., X, such that
[Xi, Xj] = C,-ka

for some constants c,f Define the corresponding coordinates on the
fibers of T*G given by

hi(p, x) = p- Xi(x)
These can be thought as smooth functions on g* and satisfy
{hi, hi} = i hy.
We recall that a casimir is a smooth function f € C>°(g*) such that

{a,f} =0, Vae C™(g")

S e



Casimir

If we write f = f(hy,..., h,) to check that f is a casimir it is enough to
check that
(1) =3 G k) = 3 Scthe=0, =1
4 h; 2 o e
that means
" of ,
%CU = 0, /s k=1,..., n

The Poisson vector field associated to a function f is

. of ,, 0

oh; ”hkah
ij k=1

7o

The Poisson vector field associated to a casimir is the zero vector field.

T o



Casimir

If we write f = f(hy,..., h,) to check that f is a casimir it is enough to
check that
(1) =3 G k) = 3 Scthe=0, =1
4 h; 2 o e
that means
" of ,
%CU = 0, /s k=1,..., n

The Poisson vector field associated to a function f is
. 1 9
hi = cih
Z ik Ohj
iJj,k=1

The Poisson vector field associated to a casimir is the zero vector field.

T o
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The Heisenberg group (L5 s

Let us go back to the main example, the Heisenberg group.

X,Y]=2Z

m relabel (X, Y, Z) = (X1, X2, Xp)

m Consider hy, hy, hg : g* — R

m write down H; for every i = 1,2,0.

hy = hoh,, hy = —hoh,

m hp is a casimir: the corresponding vector field Xj is in the center.
Hence we have the coadjoint orbits.

m if hp = 0 then every point (hy, h2,0) is an orbit

m if hg # 0 then every plane hy = X is an orbit

T



To compute the representations.

m If we take n = (hy, h2,0) € g* then we can take h = g since
[9, 9] = RXp and the corresponding character

X, (g) = eitrt)

where g = e@XTYY+2Z_ Notice that since we can take h = g there is
“nothing to induce”, so these are representation of the abelian R?.

m If we take 7 = (0,0, hy) € g* with A # 0 as representative of the
orbit. We can take h = span{Y, Z} since [h,h] =0 and it is

maximal

X,(g) = e

what to do then?

’ we have to understand the induced representations! ‘

S o
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Induced representations (L5 s

Let G be a nilpotent Lie group and H be a subgroup.

m Given a representation X : H — U(V) we want to build a
representation R : G — U(W) that is induced by X.

m We first build the Hilbert space W. Consider the set of functions
f: G — V such that

f(hg) = X(h)f(g) (14)
m Notice that this means that
X(h)f =foly

m For such a function, since X is unitary, we have that || (hg)|| is
independent on h and hence the norm of ||f(Hg)|| is well-defined,
where Hg denotes the left coset of g in H\G.

T o
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Very abstract! (L5 s

m We require that
[ IfCHe) P < o (15)
H\G

where dp is a right invariant measure on H\G.

m Then we set
W ={f:G — V| f satisfies (14)-(15)}

m Once we have set the space W we can define R : G — U(W) as
follows

R(g)f =foRg, e, (R(g))(g')="f(g'g)

where the Ry is the right translation.

m One can check that R is unitary and strongly continuous.

T
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Crucial for computations! (L5 s

m We have a natural projection 7: G — H\G.

m Given any section s : H\G — G (this means that m o s = id on
H\ G) we can consider the image of the section K = s(H\G) and
try to write elements of G as products H - K.

m Write g’g = hk we can split

(R(g)f)(g") = f(g'g) = f(hk) = X(h)f(k) (16)
|
Crucial step: solve the Master equation

gg=nh-k

m it is enough to solve the Master equation for g’ € K (use the last
equality in (16) and f is a equivariant function)

K-G=H-K
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Back to Heisenberg (L5 s

To compute the representations.

m If we take n = (h1, hp,0) € g* then we can take h = g since
[g, 9] = RXp and the corresponding character

X, (g) = e/

where g = e@XTYY+2Z_ Notice that since we can take h = g there is
“nothing to induce”, so these are representation of the abelian R2.

m If we take n = (0,0, hg) € g* with X\ # 0 as representative of the
orbit. We can take h = span{Y, Z} since [h,h] = 0 and it is
maximal

X, (g) = e™*

what to do then?

T o



The induced representation in this case works as follows: we can take as
complement K = e®X and then try to write the elements as product

H - K as follows. Let us take k = e?X in K and g = "Y' 22X general
element (it is convient to use these coordinates). We have

(X (8)f)(k) = f(kg)

and we have to write
eGXeyY+ZZ exX

as an element of H times an element of K. We have
e0X eyY+zZeXX _ eyY+(z+9y)Ze(9+x)X
so that

(Rn(g)F) (k) = f (&7 HHNZ 030X (17)
_ x’,](eyYJr(erOy)Z)f(e(0+x)X) (18)

T o
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I UDI

Last Step DI PADOVA

Writing explicitly the character and £(6) = f(e?%) as a function on
L?(R) instead of L2(K) we have

(R)(8)F)(0) = ePCHIF(0 + x) (19)

One can recognise the representation of the Lie algebra which are
skew-adjoint operators on the same space of functions

le:%f, Xof = iNOF, Xof = iAf

which indeed satisfy [Xi, Xo] = Xo.
2

d
A=XP4XG = s = N0

T o



The trick for the Master equation e

This is related to CHB formula

Lemma

Assume that the Lie algebra generated by A, B is nipotent. Then we
have that e?eBe=A = eC(AB) where

0 k
C(A,B) _ ead(A)B:ZadT(IA)B: B—|—[A,B]—|—%[A’[A,B]]+
k=0 '

Notice that the sum is finite due to nilpotency assumption.

In Heisenberg

0XeyY+zZ xX _ eyY+zZ+[0X$yY+zZ]e(0+X)X

e €

since

OXeyY+zZ xX _ eyY+(z+9y)Ze(9+><)X

e €

T o



An observation on the coordinates

The Heisenberg group g = span{X, Y, Z} with the only non trivial
commutator

X,Y]|=Z
Elements of G = exp(g) can be also written as follows

g = &Y e X = o¥Y+722 X This means that we identify

) _ eyYJrzZexX

(X7 .)/7 z

With this coordinate representation of G we have the group law
(X.y.Z) . (X/,yI.Z/) _ eyYJrzZexXey’YJrz/ZeX’X

_ e(y+y’)Y+(z+z'+xy/)Ze(x+x/)X

=(x+xy+y,z+72 +x/)

using the same trick

T e
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The Engel group (L5 s

This is the nilpotent Lie group of dimension 4 with a basis of the Lie
algebra satisfying

[X1, Xo] = X, [X1, X3] = Xa

In particular we can consider the smooth functions
h1, ha, hs, hy : g* — R. To find a basis of the Poisson vector fields it is
enough to write down h; for every i =1,2,...,5. Using our formulas

—

El = h33h2 + h48h3, hy = 7/133[,1

hs = —hOp,

while hy is a casimir since the corresponding vector field Xj is in the
center. There is a second casimir.

1
f:iﬁfmm

T
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Coadjoint orbits (L5 s

All coadjoint orbits are contained in the level sets

{h“ = (20)

12— Ahp =v

Note that {f, h;} = 0 for j > 2 (the only non zero commutators must
contain Xi) and

{f, i} = {hs, hi}hs — {ha, hi}hs = —hahs + hshs = 0

Combining this and the Poisson vector fields we have the orbits
(i) if A =v =0 then every point (hy, hp,0,0) is an orbit
(ii) if A =0 and v # 0 then orbits are planes hy =0, h3 = £V 2v

(iii) if A # 0 then the orbit coincides with the set defined by the
equations above

T s
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New representations 1 s

Fix n = (0,—v/A,0,\) then we have a choice of maximal subalgebra
h = Sp‘dIl{Xz, X37 X4}7 [h7 h] =0.
and the corresponding 1-dim representation

X, )\(eXZX2+X3X3+X4X4) (*§X2+/\x4)'

= ei
We write points on G as

g = eX2X2+X3X3+X4X4 e><1X1.

We take a complement K = exp(RX;) and we solve the Master equation
e(ixl eX2X2+X3X3+X4X4 eX1X1 — (21)

2
— Xt (8+0x) X3+ (xa+0x+ & x2) X, el0+x)X (22)

T e



We deduce that

Rux f(e"Xl) _ x,,)\(eXZXZ+(X3+9X2)X3+(X4+9X3+ %xz)X;; ) f(e(0+x1)X1 )

that is in the notation f(f) = (%)

~ 92 _
RuAf(0) = exp {" (sz + AM(xq + 0x3 + 2@))} (0 + x1)

Differentiating with respect to the x; at zero we get also the
representation of the Lie algebra

Xif=—f

e

~ (A, V)=
X2f1<29 A) f
Xsf = iNOF,
Xof = iNf

notice [X17X2] = X3 and [X17X3] = X4_ _



UNIVERSITA
DEGLI STUDI

The LaplaCian DI PADOVA

In particular notice that

Notice that the Laplacian is

& (r, v\

This gives the basis of left-invariant vector fields

2
X
Xl = 8)(1, X2 = 3X2 + X1(9X3 + Elam

X3 — 8><3 + Xlaxu X4 — aX4
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P

Final comments for today? 1 s

Notice that the Laplacian is

2 (r, v\

it is the square of a polynomial of degree = 2(step-1)
polynomial which does not has term on degree step-2
it is arbitrary!

oscillator with polynomial potential!

what is the spectrum?

summability property and relation with the Plancherel formula

proof in the case of the Engel group, remark in higher steps

S o
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