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Foreword

These note have been written primarily for you, the student. I have tried to make it easy
to read and easy to follow.
I do not wish to imply, however, that you will be able to read this text as it were a novel.
If you wish to derive any benefit from it, read each page slowly and carefully. You must
have a pencil and plenty of paper beside you so that you yourself can reproduce each step
and equation in an argument. When I say verify a statement, make a substitution, etc.
pp., you yourself must actually perform these operations. If you carry out the explicit
and detailed instructions I have given you in remarks, the text, and proofs, I can almost
guarantee that you will, with relative ease, reach the conclusions.
One final suggestion. As you come across formulas, record them and their equa-
tions/page numbers on a separate sheet of paper for easy reference. You may also
find it advantageous to do the same for Definitions and Theorems.

These wise words are borrowed from Morris Tenenbaum and Harry Pollard from the
beginning of their book Ordinary differential equations. I could not have said it better
and it certainly applies to this course.
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Figure 0.1: Don’t just read it; fight it. – Paul Halmos (The comic is abstrusegoose.com)
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Contents

How to study for Analysis II i

Polya’s algorithm for solving problems iv

List of symbols v

List of (named) theorems viii

List of important definitions x

Glossary xii

1 Sequences and series in Rd 1

1.1 Some notational remarks . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Convergence of sequences (an) ⊆ R2 . . . . . . . . . . . . . . . 2
1.3 Length and distance in Rd . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 The notion of a norm . . . . . . . . . . . . . . . . . . . . 8
1.3.2 The notion of a metric . . . . . . . . . . . . . . . . . . . 17

1.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.5 The Bolzano–Weierstrass theorem . . . . . . . . . . . . . . . . . . 29

2 Open, closed, and compact 30

2.1 Open balls in Rd . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2 Open sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32



CONTENTS i

2.3 Closed sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4 Compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.4.1 Properties of compact sets . . . . . . . . . . . . . . . . . . 56

3 Limits of functions 61

3.1 Some priming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.1.1 An abstract point of view . . . . . . . . . . . . . . . . . . 64

3.2 Limits of Rm-valued functions . . . . . . . . . . . . . . . . . . . 65
3.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.4 Characterization of limits via sequences . . . . . . . . . . . . . . . 72
3.5 Arithmetic rules for limits . . . . . . . . . . . . . . . . . . . . . . 76
3.6 One sided limits of functions on R . . . . . . . . . . . . . . . . . 77

4 Continuity 79

4.1 We start by thinking about non-continuous functions . . . . . . . . . 79
4.2 Definition of continuity . . . . . . . . . . . . . . . . . . . . . . . 82
4.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.4 Discontinuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4.1 Classification of discontinuities . . . . . . . . . . . . . . . . 98
4.4.2 Further counterexamples in continuity . . . . . . . . . . . . 98

4.5 Continuity and component-wise continuity . . . . . . . . . . . . . . 100
4.6 Operations with continuous functions . . . . . . . . . . . . . . . . 102
4.7 Continuous functions f : [a, b] → R . . . . . . . . . . . . . . . . 107

4.7.1 Two important properties of continuous functions . . . . . . . 108
4.7.2 The Intermediate Value Theorem (IVT) . . . . . . . . . . . 112
4.7.3 Applications of the IVT . . . . . . . . . . . . . . . . . . . 115
4.7.4 Weierstrass’ Extremal Value Theorem . . . . . . . . . . . . 118

4.8 Continuity of linear maps . . . . . . . . . . . . . . . . . . . . . . 123

5 Differentiability and derivative on R1 125

5.1 Historical comments on Differential Calculus . . . . . . . . . . . . . 125
5.2 Some thinking . . . . . . . . . . . . . . . . . . . . . . . . . . . 127



CONTENTS ii

5.3 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
5.3.1 Examples of derivatives . . . . . . . . . . . . . . . . . . . 132
5.3.2 Differentiability ⇒ Continuity . . . . . . . . . . . . . . . . 137
5.3.3 Are derivatives continuous? . . . . . . . . . . . . . . . . . 138

5.4 Operations with differentiable functions . . . . . . . . . . . . . . . 142
5.5 Properties of differentiable functions . . . . . . . . . . . . . . . . . 149
5.6 Derivatives of higher order . . . . . . . . . . . . . . . . . . . . . 155
5.7 Function spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6 Function sequences 160

6.1 Notions of convergence . . . . . . . . . . . . . . . . . . . . . . . 160
6.2 Examples & counterexamples . . . . . . . . . . . . . . . . . . . . 168
6.3 (Real) Power series . . . . . . . . . . . . . . . . . . . . . . . . . 169

7 Integration on R1 171

7.1 Step functions and their integrals . . . . . . . . . . . . . . . . . . 171
7.1.1 Properties of the step function integral I(f) . . . . . . . . . 182

7.2 Regulated functions and their integrals . . . . . . . . . . . . . . . . 185
7.2.1 Higher dimensions . . . . . . . . . . . . . . . . . . . . . . 198

7.3 The Riemann-Integral . . . . . . . . . . . . . . . . . . . . . . . . 199
7.3.1 Properties of the Riemann Integral . . . . . . . . . . . . . . 207

7.4 The fundamental theorem of calculus and primitives . . . . . . . . . 208
7.5 Some Rules for Integration . . . . . . . . . . . . . . . . . . . . . 213
7.6 Uniform convergence and integration . . . . . . . . . . . . . . . . 217

8 Improper Integrals on on R1 223

8.1 Appendix : The closure of sets . . . . . . . . . . . . . . . . . . . 229

9 Differentiability and derivative on Rd 230

9.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
9.1.1 Directional Derivative . . . . . . . . . . . . . . . . . . . . 236
9.1.2 Partial Derivatives . . . . . . . . . . . . . . . . . . . . . . 237

9.2 Meaning of Differentiability in Rd . . . . . . . . . . . . . . . . . . 241



CONTENTS iii

A Prerequisites 244

A.1 Some notation used in this notes . . . . . . . . . . . . . . . . . . 244
A.1.1 Operations on sets . . . . . . . . . . . . . . . . . . . . . 247
A.1.2 Some properties of sets . . . . . . . . . . . . . . . . . . . 249

A.2 Some Linear Algebra (of real vector spaces) . . . . . . . . . . . . . 251
A.2.1 Basis and dimension . . . . . . . . . . . . . . . . . . . . . 256
A.2.2 Linear maps . . . . . . . . . . . . . . . . . . . . . . . . . 258

A.3 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
A.4 Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
A.5 Elementary properties of functions of one variable . . . . . . . . . . 269

A.5.1 Restrictions of functions . . . . . . . . . . . . . . . . . . . 270
A.5.2 Monotonic functions . . . . . . . . . . . . . . . . . . . . . 270
A.5.3 Odd and even functions . . . . . . . . . . . . . . . . . . . 271
A.5.4 Convex and concave functions . . . . . . . . . . . . . . . . 272

A.6 Elementary inequalities . . . . . . . . . . . . . . . . . . . . . . . 273
A.7 Cauchy–Schwarz, Minkowski, and Hölder . . . . . . . . . . . . . . . 275

Bibliography 279



How to study for Analysis II

• Read carefully and deliberately. As you know, the way one should read in
mathematics is quite different from how you may read a history book or a magazine
or newspaper. In mathematics you must read slowly, absorbing each phrase. In
the first semester, you should all have received a self-explanation training booklet
which you should not forget. If you have lost your copy or have never received
one, you can contact me and I will bring some to the lecture.

• Think with pencil and scratch paper. Working on mathematics you should
always have a pencil and some sheets of paper ready and use them. Test out what
is written in the lecture notes, construct examples and counterexamples, draw
pictures.
This will help to clinch the ideas and procedures in your mind before starting the
exercises. After you have read and reread a problem carefully, if you still do not
see what to do, do not just sit and look at it. Get your pencil going on scratch
paper and try to dig it out. Try this "algorithm":

1. Write down what you want to show.

2. Write down what you know.

3. What can you immediately deduce from the known? Apply some known
simple inequalities and identities and see what you can get from it.

4. Think of a strategy. And try to implement it.

iv



CONTENTS v

5. Have you used all information? Do you have numbers, vectors or functions.
Have you used their specific properties?

Another good reason for getting things down is that it is much more easy to help
you. Maybe you just overlooked something and with a small hint from me or
tutors, you have a light-bulb experience. You should not rob yourself of that by
asking to much of the solutions at once.

• Be independent. To be clear, being independent does not mean that you should
ask no questions at all but to have good judgement over what to ask and when.
Sometimes little things will cause considerable confusion or you do not know where
even to begin with your studies. Then you should ask for help. Do not be afraid
that your question may sound dumb. The only dumb action is to fail to ask about
a topic that you have really tried to grasp and still do not understand. Some
people seek help too soon and some wait too long. You will have to use good
common sense in this matter.

• Persevere. Do not become frustrated if a topic or problem may completely baffle
you at first. Stick with it! An extremely interesting characteristic of learning
mathematics is that at one moment the learner may feel totally at a loss, and
then suddenly have a burst of insight that enables her to understand the situation
perfectly. If you don’t seem to be making any progress after working on a problem
for some time, put it aside and attack it again later. Many times you will then
see the solution immediately even though you have not been consciously thinking
about the problem in the meantime. There is a tremendous sense of satisfaction
in having been persistent enough and creative enough to independently solve a
problem that had given you a great deal of trouble.

• Take time to reflect To learn mathematics well you must take time to do some
reflective thinking about the material covered during the last few days or weeks.
It takes time for some ideas in mathematics to soak in. You may have to live with
them a while and do reflective thinking about them before they become a part of
you.
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• Concentrate on fundamentals. Do not try to learn mathematics by memorizing
illustrative examples.1 You will soon become overwhelmed by this approach, and
the further you go the less successful you will be. All mathematics is based on
a few fundamental principles and definitions. Some of these must be memorized.
But if you concentrate on these fundamentals and try to see how each new topic is
just a reapplication of them, very little additional memorization will be necessary.2

• Use Heuristics.3 If you work on a problem that you can not solve immediately
try to consider a problem that is similar but somewhat easier. It is not always
easy to find such problems but it will come to you with practice. For example, if
you consider a function that depends on a parameter, you can study it by setting
the parameter to a specific value. Then do the calculations and, after reaching a
satisfying result, follow your calculations step by step with the general parameter.
Many more methods may be found in [13] and [10]. Some historical points and
further references can be found in [12]. Some evidence of student’s benefits from
following heuristic methods as well as further references can be found in [5].

1Which does not mean you should not have a couple of examples/counterexamples up your sleeve
for any concept learned.

2For example: If you fully understood how one searches for extrema when one considers functions
of one variable, only few additional things have to be memorized in the multi-variable case. (Even less
with further knowledge in multi-variable calculus.)

3Heuristics is the study of means and methods of problem solving.

https://en.wikipedia.org/wiki/Heuristic


Polya’s algorithm for solving problems
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List of symbols

Here I collect a couple of symbols used in the text and reference their definition for you
to look up. There are more symbols in Section A.1.

RN0 This denotes the set of all sequences (an) with an ∈ R for all n ∈ N.
(an) ∈ RN0 is equivalent to say (an) ⊆ R. The point of this
notation is to stress that (an) is a point in a vector space.

ΩN This denotes the set of all sequences (an) with an ∈ Ω for all n ∈ N.
See also Definition A.3.

lim
n→∞ an This denotes the limit of a sequence. For example in R or Rd. How-

ever, the sequence may also be a sequence of functions. See Definitions
1.11 and 6.2.

| · | Absolute value of a real number. See Section 1.3.
‖ · ‖X Is a norm on a linear space X . Some norms have special abbreviations

as ‖ · ‖C0 = ‖ · ‖∞. Some norms on Rd have special notation too.
See Sections 1.3 and 5.7.

C(Ω) The set of continuous functions f : Ω → R, Ω ⊆ Rd. See also
Section 5.7.

C[a, b] The set of continuous functions f : [a, b] → R, Ω ⊆ Rd. See also
Section 5.7.

PC[a, b] The set of all piecewise continuous functions on [a, b]. See Definition
7.6.
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Ck[a, b] The set of k-times differentiable functions f : [a, b] → R such that
f (i) ∈ C[a, b] for i = 0, . . . , k. See also Section 5.7.

S[a, b] The real vector space of all step-functions f : [a, b] → R. See
Definitions 7.2 and 7.3.

R[a, b] The set of all regulated functions on the interval [a, b]. See Definition
7.5 and Theorem 7.4.

I(f) Step function integral. See Definition 7.2.

b∫
a

f(x)dx Can stand for the step function integral I(f) if f ∈ S[a, b], the
regulated Integral (Definition 7.8), or the Riemann integral (Definition
7.10).∫ b

a
f(x)dx Stands for the upper integral. See Definition 7.9.

∫ b

a
f(x)dx Stands for the lower integral. See Definition 7.9.

d
dx Differentiation operator with respect to x for functions f : (a, b) →

R. See also Section 5.3.
∂

∂xi
Differentiation operator with respect to xi for functions f : Ω → R

with Ω ⊆ Rd. The ∂ is used to indicate that the function depend on
more than one variable. It is called the partial derivative with respect
to xi. See also Section 9.1.2.

fn → f If the fn are functions then this symbol indicates that the sequence
(fn) converges in a sense to f . It should additionally be indicated
whether the convergence is pointwise (Definition 6.1) or uniform (Def-
inition 6.2).

fn ⇒ f This symbol usually means that the sequence (fn) converges uniformly
to f . In this notes we indicate uniform convergence by specifically
stating it. For the definition of uniform convergence see Definition 6.2.
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cl(Ω) Let Ω ⊆ Rd be a set. Then, cl(Ω) denotes the closure of the set Ω,
i.e. it is the set of all points of Ω union with all limit points of Ω in
Rd. See Definition 8.5.

Sub(V ) The set Sub(V ) is the collection of all subs-spaces of the (real) vector
space V .

f
∣∣∣
X

Restriction of a function to a sub-set of its domain. Let f : A → B

be a function and X ⊆ A. Then, the function g : C → B with
x 7→ f(x) is denoted by f

∣∣∣
C

.
χA Denotes the characteristic function (or indicator function) of the set

A. See Definition 7.1.



List of (named) theorems

This list is not complete and by no means all theorems you need to know. These are the
most important theorems of the class without which you can not work.
For the starred theorems you need to be able to give detailed proofs and for the rest you
should know the main ideas. Other theorems, not listed here, might still be asked in the
exam if their proof is straight forward and you might need them in arguing other results.

Bolzano–Weierstrass in R p. 263
Bolzano–Weierstrass in Rd p. 29
Arithmetic rules for limits ∗ p. 76
Arithmetic rules for C0-functions ∗ p. 102
Sequence characterization of limits p. 72
Composition of continuous functions ∗ p. 105
Intermediate Value Theorem (IVT) ∗ p. 112
Extremal Value Theorem (EVT) ∗ p. 120
Brouwer’s Fixed Point Theorem ∗ p. 116
Arithmetic rules for derivatives ∗ p. 142
Chain Rule p. 144
Fermat’s Theorem ∗ p. 149
Rolle’s Theorem ∗ p. 150
Mean Value Theorem ∗ p. 153
Heine–Borel Theorem p. 60

xi
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Heine’s Theorem p. 189
Step-function integral p. 181
Properties Step-function integral p 182
Regulated Integral p. 194
Properties Regulated Integral p. 197
Properties Riemann Integral p. 207
Fundamental Theorem of Calculus ∗ p. 208
Integration by Parts p. 213
Integration by Substitution p. 214



List of important definitions

This list is not a complete list of all definitions you need to know. It is simply a help to
quickly navigate around the notes. The text also has an index and some work needs to
be done by the reader in preparation of tests and exams.

Vector space p. 251
Scalar product p. 253
Linear map p. 258
Norm p. 9
Metric p. 18
Convergence of sequences in R p. 259
Convergence of sequences in Rd p. 22
Cauchy sequence p. 263
Limit point p. 36
Isolated point p. 41
Open set p. 32
Open ball p. 30
Closed set p. 43
Closure of a set p. 229
Open cover p. 51
Finite sub-cover p. 52
Compact set p. 52
Limit of a Rm–valued function p. 65

xiii
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Continuity at a point of Rm–valued functions p. 82
Continuity p. 87
Uniform continuity p. 189
Piecewise continuous function p. 188
Local maximum p. 118
Global maximum p. 118
Bounded functions p. 110
Differentiability at a point p. 128
Derivative p. 131
Stationary point p. 149
The space C[a, b] p. 155
The space Ck[a, b] p. 158
Total derivative p. 230
Partial derivative p. 238
Pointwise convergence p. 162
Uniform convergence p. 163
Indicator function p. 171
Step function p. 174
Regulated function p. 185
Regulated integral p. 196
Riemann-integral p. 201
Upper- and lower integral p. 199
Primitive of a function p. 208
Absolute integrability in R p. 227



Glossary

Please find some more here.

Ansatz. An ansatz is an assumption about the form of an unknown function which is
made in order to facilitate solution of an equation or other problem. Example: find an
example fo a function with two extrema. A suitable ansatz is then

f ′(x) = a(x− x0)(x− x1),

where x0 and x1 are the points in which you want the extrema to be. Another example
is partial fractions.

Convexity. See Section A.5.4. A function is said to be convex on an interval [a, b] iff

f(λx+ (1 − λ)y) ≤ λf(x) + (1 − λ)f(y)

for all x, y ∈ [a, b] and all λ ∈ [0, 1]. Another criterion is that the second derivative f ′′

is non-negative (f ′′(x) ≥ 0 for x ∈ I) on the interval. Sometimes, these functions are
called convex downward or concave upward. However, the latter names are uncommon
in the academic literature and will not be used in this course. A function f is called
concave, if −f is convex. Another way to see convexity is to check weather the graph
is always under any secant line one can draw over a given domain. If the function is
always above, it ic concave.

Domain. The domain of a function is the set of input values for which the function
is defined. The largest possible set of such input values for which a function can be

xv

http://www.cut-the-knot.org/glossary/atop.shtml
http://www.personal.soton.ac.uk/jav/soton/HELM/workbooks/workbook_3/3_6_par_fracs.pdf
https://en.wikipedia.org/wiki/Secant_line
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defined is called the natural domain. Example: Let f : [0, 1] → R be defined by
f(x) =

√
x. The interval [0, 1] is the domain of f . However, given the function

f(x) =
√
x, the natural domain is [0,+∞) since the square root (

√
·) makes sense

for all non-negative real numbers.

Extrema. (pl.) The maxima and minima (also pl.) of a function are collectively
known as extrema.4 Sometimes these points are called turning points. However, the
latter name bears the possibility of being confused with inflexion points.

Function. A functions is a mathematical relationship consisting of a rule linking ele-
ments from two sets such that each element from the first set (the domain) links to one
and only one element from the second set (the image set or range).

Graph. Given a function f : dom(f) → Rm, then the graph is the set

{(x, f(x)) : x ∈ dom(f)} ⊆ Rn+m.

If n = m = 1, the graph can also be represented by a picture in a xy-plane showing
the curve y = f(x), where x goes through (a part of) the domain.

Image. The image of a function f is the collection of all values that a function can
take when the argument goes through the domain of f , i.e. the set

{
f(x) : x in the domain of f

}
.

Inflexion point. Inflexion points are the points at which a function changes from
convex to concave or from concave to convex. These can be found as the sign changing
zeros of f ′′. Remember that the second derivative may vanish at a point without
changing sign. An easy example is f(x) = x4. (Show that!)

Secant. In geometry, a secant of a curve is a line that (locally) intersects two points
on the curve.

4The singular form is extremum. It could be a maximum or minimum.
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Stationary point. Given a function f , the stationary points of f : I ⊆ R → R are
the points in the domain of f at which f ′(x) = 0. If the function depends on several
variables, i.e. f : Ω ⊆ Rd → R, the stationary points are points in the domain of f
for which ∇f(x) = 0.

Such that. A condition used in the definition of a mathematical object, commonly
denoted : or |. For example, the rational numbers Q can be defined as

Q =
{p
q

: q 6= 0, p, q ∈ Z
}
.

In sentences, such that is sometimes abbreviated by s.t..

https://en.wikipedia.org/wiki/Stationary_point


Chapter

1
Sequences and series in Rd

This chapter serves as a gentle introduction to Analysis 2. We will look at some defini-
tions we made in Analysis 1 and will transfer them fromR1 toRd with arbitrary d ≥ 1.

At the start, this will leads us to think about distance and length inRd. The first section
is intended to motivate these investigations and the second and third will introduce the
precise notions of length and distance that we will use in this course.

1.1 Some notational remarks

Throughout the notes, I will continue to denote sequences by (an) regardless of whether
they are sequences in R or in Rd, d ≥ 1.
If we consider a sequence in Rd, it is understood that the elements an of (an) are of
the type

Rd 3 an =


a

(n)
1
...

a
(n)
d

 =
[
a

(n)
1 . . . a

(n)
d

]T
.

I will usually denote the ith component by a lower index and the counting index of the
sequence in parenthesis in an upper index. This notation may take some time to get
used to. I suggest you do the exercises in this section on an extra sheet of paper to get
the necessary acquaintance.

1



CHAPTER 1. SEQUENCES AND SERIES IN Rd 2

In special cases asR2, like in the next section, we may simplify notation by the choice of
extra letters like xn and yn. However, for the general case we use the above described
notation. To get a better feeling of the statements, you may always specialise them to
d = 2 to see better what the notation is trying to say.

1.2 Convergence of sequences (an) ⊆ R
2

We start with an repetition of

Definition 1.1 (Convergence of sequences in R).
A sequence (an) ⊆ R is convergent if and only if there exists an a ∈ R such
that

∀ε > 0 ∃n0 ∈ N : ∀n ∈ N, n ≥ n0, |an − a| < ε.

Let us write one more times in plain English, what that means:

Now, let us ask ourselves the following question. Let (xn), (yn) ⊆ R be two sequences
and let,

an :=
xn

yn

 ∈ R2

be a sequence in R2. How would you define convergence (an) → a in this case?
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How do you get the right definition?

1. How do you calculate |x− y| for x, y ∈ R2? (A-level maths)

2. Read Definition 1.1 out loud.

3. Now, do read the meaning of Definition 1.1 out loud. What does |an − a| < ε

mean?
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Give it a go and write down some thoughts. Why not start with a verbal description,
which you thought about on the last page, which you den transform in more and more
formal terms?

Definition 1.2 (Convergence of (an) ⊆ R2 (Student version I)).

Definition 1.3 (Convergence of (an) ⊆ R2 (Student version II)).

Definition 1.4 (Convergence of (an) ⊆ R2 (Student version III)).
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Let us now write down the precise definitions and investigate their relationships.

Definition 1.5 (Convergence of (an) ⊆ R2, Version I).

Definition 1.6 (Convergence of (an) ⊆ R2, Version II).

Definition 1.7 (Convergence of (an) ⊆ R2, Version III).
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Question:

What theorem(s) should we expect to be true?

Theorem 1.1.
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Proof. The full proof will be on the problem sheet for you to carry out. However, let
us discuss the main points and difficulties.
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1.3 Length and distance in Rd

1.3.1 The notion of a norm

Recall the calculation of

1. Length |x| of x for an x ∈ R2.

2. Length |x| of x for an x ∈ R3.

Recall properties of length R2 and R3:

1. How is the length of x and λx related if x ∈ R2 or R3 and λ ∈ R.

2. Can length be negative?

3. How is the length of x+ y related to the length of x and y?
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With that, we introduce the notions of a norm (length) and metric (distance) on Rd.
Pay attention to the notation. Usually, students find it difficult to use at first. The way
to overcome it and get really familiar, is to work with it.

Definition 1.8 (Norm (length) on Rd).
A function ‖ · ‖ : Rd → R≥0 is called a norm if and only if

(P1) For all x ∈ Rd, it holds

‖x‖ ≥ 0 (Positivity)

and ‖x‖ = 0 if and only if x = 0.

(P2) For all λ ∈ R, x ∈ Rd, it holds

‖λx‖ = |λ|‖x‖. (Homogeneity)

(P3) For all x, y ∈ Rd, we have

‖x+ y‖ ≤ ‖x‖ + ‖y‖. (Triangle inequality)

Remark 1.1. A vector space which is equipped with a norm, is called a normed vector
space. As always, the · in ‖ · ‖ indicates where the argument goes, e.g. ‖x‖ is the
norm of x ∈ Rd for a given norm. The notation ‖ · ‖ is used if we want to talk about
the norm as a function on Rd and the notation ‖x‖ means the concrete norm of x.1,2

Remark 1.2. The definition of a norm is an abstract one. On some spaces, we have
many norms as we will soon see. However, on some vector spaces,Rd being an example,
all norms are related.

1That is the same difference as between a function f and its value at x which is denoted by f(x).
2Again, ‖ · ‖ stands for any function Rd → R≥0 satisfying the three conditions in the definition

above.

https://en.wikipedia.org/wiki/Normed_vector_space
https://en.wikipedia.org/wiki/Normed_vector_space
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Example 1.1. The easiest example for a norm is the absolute value function | · | which
is defined on R as 

| · | : R → R≥0

x 7→


x : x > 0
0 : x = 0

−x : x < 0

.

It is clear that |x| ≥ 0 for every x ∈ R as well as |x| = 0 if and only if x = 0. To
show (P2) we take a λ ∈ R and obtain

|λx| =

 λx : λx > 0
−λx : λx ≤ 0

= |λ||x|.

The triangle inequality |x + y| ≤ |x| + |y| for x, y ∈ R is a well known fact from
Analysis 1. Thus, | · | is a norm on R in the sense of the definition above. Again, the ·
indicates where the argument goes.
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Example 1.2. The second example for such a function is the well known Euclidean

length (or norm) which is defined as

‖x‖2 =
√

|x1|2 + |x2|2 + · · · + |xd|2 =

√√√√√ d∑
i=1

|xi|2 (1.3.1)

for any x = [x1, . . . , xd]T ∈ Rd.

Exercise 1.1. Calculate the Euclidean norm of the vectors

 2
−3

 and

−1
2

.

Remark 1.3. In school and applied mathematics, also in the module Mathematical
Methods 2, ‖ · ‖2 is often denoted by | · |. We do not use this notation since we
reserve it for the absolute value function | · | defined on the number line R. If d = 1,
we get that ‖x‖2 =

√
x2 = max{x,−x} = |x| is the usual absolute value.
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Exercise 1.2. Prove that ‖ · ‖2 fulfils Properties (P1) to (P3) in Definition 1.8 for
d = 2.

Example 1.3. The 2 in the definition of ‖ · ‖2 in (1.3.1) plays no special role other than
giving the familiar Euclidean distance from the origin ofRd to x which we call length of
x. Since there is an everyday meaning to this word, we will generally be speaking about
norms since it is sometimes useful to speak about lengths that are defined in different
terms. We set

‖x‖p = (|x1|p + . . . + |xd|p)
1
p =

 d∑
i=1

|xi|p
1

p

, (1.3.2)

where p may be in [1,+∞).
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We can extend the definition of ‖ · ‖p to p = +∞ if we set

‖x‖∞ = max
i=1,...,d

|xi| = max{|x1|, |x2|, . . . , |xd|}.

For any p ∈ [0,+∞], we call ‖ · ‖p the `p-norm.
If d = 1, we have ‖x‖p = |x|, where |x| = max{x,−x}.

Exercise 1.3. Calculate the ‖·‖3-norm of the vectors
[
2 , −3

]T
and

[
−1 , 2

]T
.

For us, the three norms

• ‖x‖1 =

• ‖x‖2 =

• ‖x‖∞ =

are the most important and therefore, we shall investigate some relations between them.
They are called the `1, `2, and `∞ norm respectively. We also call ‖x‖∞ the supremum

norm (maximum norm) of x.
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We have

Theorem 1.2.

Let ‖ · ‖1, ‖ · ‖2, and ‖ · ‖∞ be the norms on Rd as defined above. Then, we
have the following inequalities

1. ‖x‖∞ ≤ ‖x‖1 ≤ d ‖x‖∞,

2. ‖x‖∞ ≤ ‖x‖2 ≤
√
d ‖x‖∞, and

3. ‖x‖2 ≤ ‖x‖1 ≤ d ‖x‖2

for all x ∈ Rd.

Remark 1.4. The situation of Theorem 1.2 is typical for norms on Rd. In fact, for two
arbitrary norms ‖ · ‖a and ‖ · ‖b we can always find positive constants c and C such
that

c‖x‖a ≤ ‖x‖b ≤ C‖x‖a. (1.3.3)

If two norms satisfy an estimate of the type (1.3.3), we say that the norms are equivalent.
See also the article Norm in the Encyclopedia of Mathematics.

Proof of Theorem 1.2.

The inequality ‖x‖∞ ≤ ‖x‖1 is clear since ‖x‖1 contains max
i=1,...,d

|xi|.
Further, we have

‖x‖1 = |x1| + . . .+ |xd| ≤ d max
i=1,...,d

|xi|

= d‖x‖∞.

since |xi| ≤ max
i=1,...,d

|xi| for all i = 1, . . . , d.
Thus, we proved the first statement of the theorem.

https://www.encyclopediaofmath.org/index.php/Norm
https://www.encyclopediaofmath.org/index.php/Main_Page
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For the first inequality of the second statement, let j ∈ {1, . . . , d} be
such that |xj| = max

i=1,...,d
|xi|.

Then,

‖x‖∞ =
√

|xj|2 ≤

= ‖x‖2.

For the second case, we obtain

‖x‖2 =
√

|x1|2 + . . .+ |xd|2 ≤

since |xi|2 ≤ max
i=1,...,d

|xi|2 for all i = 1, . . . , d.

Further, we have max |xi|2 ≤ (max |xi|)2.
Hence, we obtain ‖x‖2 ≤

√
d‖x‖∞.

For the third statement, we remember that

x = x1e1 + . . .+ xded,

where {ei : i = 1, . . . , d} is the standard basis of Rd.
By the triangle inequality for ‖ · ‖2, we get

‖x‖2 = ‖x1e1 + . . .+ xded‖2 ≤ |x1|‖e1‖ + |xd|‖ed‖,

≤ |x1| + . . .+ |xd| = ‖x‖1,

since ‖ei‖2 = 1 for all i ∈ {1, . . . , d}.
To prove the second inequality of the third statement, we estimate

‖x‖1 = |x1| + . . .+ |xd| ≤ d‖x‖2,

where we used |xj| ≤ ‖x‖2, j = 1, . . . , d.3

This concludes the proof.

3We could have combined estimates 1 and 2 to get the right hand side of the third estimate.
However, it is worthwhile to prove it in its own right.
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Remark 1.5. The estimate in the third statement in Theorem 1.2 is not the best
possible. However, it will suffice for everything we want to do in this module. On the
problem sheet, you will find questions leading to the proof of a sharper version

∀x ∈ Rd : ‖x‖2 ≤ ‖x‖1 ≤
√
d ‖x‖2.

Let us draw some pictures to get a better grasp of Theorem 1.2.

Figure 1.1: Unit balls in different norms.
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1.3.2 The notion of a metric

Recall the calculation of

1. the distance |x− y| between x and y for x, y ∈ R2.

2. the distance |x− y| between x and y for x, y ∈ R3.

Recall properties of distance in R2 and R3:

1. How is the distance of x to y related to the distance from y to x.

2. Can distance be negative?

3. What is the relation of distances if you walk from a point x to a point y when
you take a detour to a point z?
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Let us now introduce the notion of a distance, in more general situations called metric,
on Rd, d ≥ 1.

Definition 1.9 (Metric (distance) on Rd).
A function ρ : Rd ×Rd → R≥0 is called a metric (distance) if it satisfies

(H1) For any x, y ∈ Rd, we have

ρ(x, y) ≥ 0 (Positivity)

and ρ(x, y) = 0 if and only if x = y.

(H2) For any x, y ∈ Rd, we have

ρ(x, y) = ρ(y, x). (Symmetry)

(H3) For any x, y, and z ∈ Rd, we have

ρ(x, y) ≤ ρ(x, z) + ρ(z, y). (Triangle inequality)

Figure 1.2: Calculating the distance between two points in R2 using Pythagoras’ theo-
rem.
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Example 1.4. A well-known example for a metric is the well-known Euclidean distance

ρ2(x, y) =

√√√√√ d∑
i=1

|xi − yi|2.

We say this metric is induced by the Euclidean norm ‖ · ‖2 as

ρ2(x, y) = ‖x− y‖2. (1.3.4)

Let us check the properties (H1) to (H3). Since we have ρ2(x, y) = ‖x−y‖2 ≥ 0
(see (P1) in Definition 1.8), (H1) follows. By (P2) in Definition 1.8, we get

ρ2(x, y) = ‖x− y‖2 = ‖ − (y − x)‖2

= | − 1|‖y − x‖2

= ρ2(y, x).

Finally, we have

ρ2(x, y) = ‖x− y‖2 = ‖x− z + z − y‖2

≤ ‖x− z‖2 + ‖z − y‖2 = ρ2(x, z) + ρ2(z, y)

by (P3) in Definition 1.8.

Example 1.5. The norms defined in Example 1.3 provide another possibility to define
distances on Rd. We get

ρp(x, y) = ‖x− y‖p =
 d∑

i=1
|xi − yi|p

1
p

(1.3.5)

and
ρ∞(x, y) = max

i=1,...,d
|xi − yi|.
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Exercise 1.4. Take x =
[
1 1 1

]T
and y =

[
−1 −2 5

]T
and compute their

distances with ρp for p = 1, 2, and ∞.

Exercise 1.5. Using the properties of norms, try to prove that ρp, defined in (1.3.5),
is a metric on Rd according to Definition 1.9.

Remark 1.6. In this module, we will only consider special classes of metrics which are,
in fact, induced by norms as on (1.3.4). However, metrics can not only be defined
on vector spaces and do even then not necessarily come from norms; the more general
theory leads to metric spaces which is just a non-empty set equipped with a metric, i.e.
a function with the properties stated in Definition 1.9.

https://en.wikipedia.org/wiki/Metric_space
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1.4 Conclusions

Reading 1. This Sections 1.4 and 1.5 form this week’s reading. Please take the time
to work though it with care and keep a list of questions which you can either ask me,
your tutor or the MLSC staff.
How should you go through the reading?

1. First read through skipping proofs.

2. Read the definitions and theorems again and write down examples in simple cases
i.e. d = 1 (Analysis 1) and d = 2.

3. Work through the proofs. If you do not understand certain steps, write down the
questions with a useful reference and ask me, your tutor, or the MLSC staff.

With the discussion of norm and metric, we are prepared, to make the following defini-
tions regarding the boundedness and convergence of sequences in Rd with respect to
(w.r.t.) a norm ‖ · ‖ or a metric ρ.

Definition 1.10 (Boundedness of (an) ⊆ Rd).
Let ‖ · ‖ be a norm on Rd. Let (an) ⊆ Rd be a sequence. We say that (an) is
bounded w.r.t. ‖ · ‖ if and only if there exists C > 0 such that

∀n ∈ N : ‖an‖ ≤ C.

Remark 1.7. The choice of the norm in Definition 1.10 is of no matter. In light of
Remark 1.4, we have that for any two norms ‖ · ‖a and ‖ · ‖b, that if (an) is bounded
w.r.t. ‖ · ‖a then it is bounded w.r.t. to ‖ · ‖b and vice versa.

Exercise 1.6 (Skip this exercise in a first reading.). Can you produce a definition of
boundedness of a set A ⊆ Rd in terms of norms and then in terms of a metric? Recon-
sider first the definitions we made in the case R1 and then take a general norm/metric
satisfying Definitions 1.8/1.9 and generalise.



CHAPTER 1. SEQUENCES AND SERIES IN Rd 22

Remark 1.8. You might think of another definition of boundedness, which makes more
direct use of our knowledge of Analysis 1. Should a sequence (an) ⊆ Rd not be
bounded if all the component sequences are bounded?
The answer is yes. Can you work out how this is related to Definition 1.10? (Hint:
Theorem 1.2.) If not, you should go ahead and read through the rest of this week’s
reading and come back to this question at the end.

Exercise 1.7. Illustrating Remark 1.7, prove that a sequence which is bounded w.r.t.4

‖ · ‖1 is also bounded w.r.t. ‖ · ‖2, and ‖ · ‖∞.

Definition 1.11 (Convergence of (an) ⊆ Rd).
Let ρ be a metric on Rd. We say that a sequence (an) ⊆ Rd is convergent

w.r.t. ρ if and only if there exists an a ∈ Rd such that

∀ε > 0 ∃n0 ∈ N : ∀n ∈ N, n ≥ n0, ρ(an, a) < ε.

Write the definition out in plain English:

4Just a reminder. The abbreviation w.r.t. stands for with respect to.
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Remark 1.9. In the definition above, the convergence depends on the chosen metric,
which is true in general. In this module, we will (mostly) use metrics ρ on Rd which
come from a norm, i.e. there exists a norm ‖ · ‖ such that ρ(x, y) = ‖x− y‖.
Such metrics produce all the same notion of convergence, i.e. if a sequence

converges with respect to one, it converges with respect to all of them.

However, you should be aware that there exists metrics ρ, also on Rd, which do not
come from a norm in the above described sense. For instance, consider the metric

ρ(x, y) :=

 1 : x 6= y

0 : x = y
. (1.4.1)

See also Remark 1.6.

Which sequences converge inR, if it is equipped with the above metric ρ (see (1.4.1))?
(We call this metric the discrete metric.)

http://mathworld.wolfram.com/DiscreteMetric.html
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This discussion leads us to make the following particular definition

Definition 1.12 (Convergence of (an) ⊆ Rd w.r.t ‖ · ‖2).
We say that a sequence (an) ⊆ Rd is convergent (w.r.t. ‖ · ‖2) if and only if
there exists an a ∈ Rd such that

∀ε > 0 ∃n0 ∈ N : ∀n ∈ N, n ≥ n0, ‖an − a‖2 < ε.

Remark 1.10. The convergence according to Definition 1.12 is equivalent to component-
wise convergence. See the Problem Sheet.

Remark 1.11. By Theorem 1.2, we obtain that the use of the ‖ · ‖2 norm in the above
definition is for our convenience, we could use ‖ · ‖1 or ‖ · ‖∞ and would have that
sequences which converge with respect to the metric ‖x − y‖i, i ∈ {1, 2,∞} also
converge with respect to the others. See also Remark 1.4.

Exercise 1.8. To understand the situation better, prove the assertion on the last remark,
i.e. prove the following statements:

1. Let (an) ⊆ Rd be a sequence which converges with respect to ‖ · ‖2. Prove
that it then converges with respect to ‖ · ‖1.

2. Let (an) ⊆ Rd be a sequence which converges with respect to ‖ · ‖1. Prove
that it then converges with respect to ‖ · ‖∞.

3. Let (an) ⊆ Rd be a sequence which converges with respect to ‖ · ‖∞. What
can you say?

Hint: You have to use Theorem 1.2.
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Remark 1.12. In the remainder of this module, we will use Definition 1.12 as the
definition of convergence in Rd. If necessary, we will do calculations in different norms
but will always use Theorem 1.2 to get back to the `2-norm.

We can now use Definition 1.12 to make a suitable definition of series over elements in
Rd. Before you read the definition, can you come up with a suitable one yourself?

Definition 1.13 (Series in Rd).

Let (an) ⊆ Rd. Then, the series
+∞∑
k=1

ak is convergent if and only if the sequence

(sn), defined by

sn :=
n∑

k=1
ak,

converges in the sense of Definition 1.12.

In general, it seems difficult to check that whether a series converges or not. Try for

+∞∑
k=1

k−2

k−3

 .
If you think one should be able to do that component-wise, i.e. the series should converge
because we know that

+∞∑
k=1

1
k2 and

+∞∑
k=1

1
k3

converge, you are right. Before you turn the page, write down a theorem that formalises
this intuition. Can you prove it? Consider the case d = 2 first to avoid unnecessary
notational difficulty.
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Theorem 1.3 (Componentwise convergence).

Let (an) ⊆ Rd be a sequence. The series
+∞∑
k=1

ak is convergent if and only if all

the component series
+∞∑
k=1

a
(k)
1 , . . . ,

+∞∑
k=1

a
(k)
d

converge, where ak =
[
a

(k)
1 , . . . , a

(k)
d

]T .a

aThe (a(k)
i ) ⊆ R are sequences with one parameter k ∈ N as we know them from Analysis 1.

We call them the component sequences of (ak) ⊆ Rd. See also the beginning of Chapter 1.

Proof. We prove the two case separately. Read it carefully and do not forget your
self-explanation training.

[⇒] Let (sn) be the series of partial sums of
+∞∑
k=1

ak.

Since the series converges, we have that there exists an S = [S1, . . . , Sd]T ∈
Rd such that for all ε > 0 there exists n0 ∈ N such that

‖sn − S‖2 =
∥∥∥∥∥∥

n∑
k=1

ak − S

∥∥∥∥∥∥2
<

ε√
d
.

Let j ∈ {1, . . . , d}.
Then∣∣∣∣∣∣

+∞∑
k=1

a
(k)
j − Sj

∣∣∣∣∣∣ ≤ ‖sn − S‖1 ≤
√
d‖sn − S‖2 < ε.

Thus, for all j ∈ {1, . . . , d}, the series
+∞∑
k=1

a
(k)
j converges.

[⇐] Let now
+∞∑
k=1

a
(k)
j be convergent for all j ∈ {1, . . . , d}.

We show that
+∞∑
k=1

ak is convergent.

Let ε > 0 be arbitrary.
There exist n1, . . . , nd ∈ N such that for all j ∈ {1, . . . , d}

∀n ≥ nj :
∣∣∣∣∣∣

n∑
k=1

a
(k)
j − Sj

∣∣∣∣∣∣ < ε

d
(1.4.2)



CHAPTER 1. SEQUENCES AND SERIES IN Rd 27

holds.
Now, since ∥∥∥∥∥∥

n∑
k=1

ak − S

∥∥∥∥∥∥2
≤
∥∥∥∥∥∥

n∑
k=1

ak − S

∥∥∥∥∥∥1
,

we get from (1.4.2) that∥∥∥∥∥∥
n∑

k=1
ak − S

∥∥∥∥∥∥2
<
ε

d
+ . . .+ ε

d
= d

ε

d
= ε.

Thus,
+∞∑
k=1

ak converges.

This concludes the proof.

Let us use another definition to reduce the question to something we know.

Definition 1.14 (Absolute convergence).

The series
+∞∑
k=1

ak is absolutely convergent if the series
+∞∑
k=1

‖ak‖2 converges.

Remark 1.13. The series
+∞∑
k=1

‖ak‖2 in the above definition is a series of non-negative

real numbers since which can be treated with the methods of Analysis 1 and it converges
if and only if the sequence (sn), defined by

sn :=
n∑

k=1
‖ak‖2

converges as a sequence in R1.

We should try to prove a result, as in Analysis 1, that connects absolute convergence with
convergence. Before you turn the page, try to formulate a reasonable result connecting
convergence and absolute convergence and try to prove it.
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Theorem 1.4 (Absolute convergence ⇒ convergence).

Let
+∞∑
k=1

ak be absolutely convergent. Then, the series
+∞∑
k=1

ak converges.

Proof.

Since
+∞∑
k=1

ak converges absolutely, we have that (Sn) with

Sn :=
n∑

k=1
‖ak‖2

converges.
To reach the result, we shall show that for all j = 1, . . . , d the series
+∞∑
k=1

a
(j)
k converge and then apply Theorem 1.3.

We have the estimate

|a(j)
k | =

√
|a(j)

k |2 ≤
√

|a(1)
k |2 + . . .+ |a(d)

k |2 = ‖ak‖2. (1.4.3)

Let now (sn) be the sequence of partial sums of
+∞∑
k=1

|a(j)
k |.

By (1.4.3), we have 0 ≤ sn ≤ Sn and we obtain that
+∞∑
k=1

a
(j)
k converges

absolutely and, by a result of Analysis 1, therefore converges.
This concludes the proof.



CHAPTER 1. SEQUENCES AND SERIES IN Rd 29

1.5 The Bolzano–Weierstrass theorem

Finally, we prove a generalization of the Bolzano–Weiserstrass theorem from Analysis
1 to Rd. Before you proceed recall the ingredients of the proof that we have done in
Analysis 1 and think whether it could work in Rd.

Theorem 1.5 (Bolzano-Weierstrass).
Every bounded sequence (xn) ⊆ Rd has a convergent sub-sequence.

Proof.

Let (xn) ⊆ Rd be a bounded sequence, i.e. there exists a constant C > 0
such that ‖xn‖2 ≤ C for all n ∈ N.5

We denote
xn =

[
x

(n)
1 , . . . , x

(n)
d

]T
.

The sequence (x(n)
1 ) of first components of the elements of (xn) is a

bounded real sequence.
Thus, by the Analysis 1 Bolzano–Weierstrass, there exists a convergent sub-
sequence (x(nk)

1 ) ⊆ (x(n)
1 ).

Now, we consider (xnk
) ⊆ (xn).

By the same arguments6, we can now pick a convergent subsequence of the
(x(nk)

2 ) and, thus, a corresponding sub-sequence of (xnk
).7

Continuing like this for the remaining n− 2 components, we obtain a sub-
sequence of (xn) in which the sequences of all components converge and,
therefore, the sequence itself converges in Rd.
This concludes the proof.

5See Definition 1.10 and Remark 1.7.
6Note here that you are taking sub-sequences of sub-sequences etc. I have written the argument

mostly in words as the notation would get more and more sub-indices.
7i.e. the sequence (xnkl

). Note that the first component remains a convergent sequence as every
sub-sequence of a convergent sequence is convergent with the same limit. I leave it to you to show
that as an exercise.
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2
Open, closed, and compact

2.1 Open balls in Rd

One of the fundamental notions of modern Analysis (and a field called Topology) is the
notion of an open set. To define what an open set is, we need a the simple concept of
open balls. We introduce

Definition 2.1 (Open ball of radius r around x).
We define the open ball of radius r > 0 around a point x ∈ Rd by

Br(x) :=
{
y ∈ Rd : ρ2(x, y) < r

}
,

=
{
y ∈ Rd : ‖x− y‖2 < r

}
.

Remark 2.1. In the definition of the open ball, we could use different metrics than just
ρ2. However, this choice will give us the balls (and spheres) as we know them. See also
Remarks 1.4 and 1.7.

Exercise 2.1. Can you figure out, how the unit ball looks like in R2 if we replace ρ2

above by ρ1 or ρ∞? See Figure 1.1.

30
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Example 2.1. Let us consider d = 1, ρ(x, y) = |x − y|. Then, for x ∈ R and
r > 0, we have

Br(x) = (x− r, x+ r).

By the definition of an open ball, we have

Br(x) = {y ∈ R : ρ(x, y) < r}

= {y ∈ R : |x− y| < r},

i.e. to see what the set Br(x) is, we have to solve |x− y| < r for y and obtain

|x− y| < r

⇔ −r < y − x < r

⇔ x− r < y < x+ r

which, with the notation introduced in Analysis 1, means that y ∈ (x− r, x+ r).
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2.2 Open sets

Now we introduce the very important

Definition 2.2 (Open sets).
A set Ω ⊆ Rd is called open if and only if

Figure 2.1: Illustration of an open set.
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Remark 2.2. The definition above can intuitively be read as follows: changing x only
ever so slightly does not lead to leaving the set or, since we are in a vector space, at
every point x of the set Ω we can go a, possibly very small, step in any direction without
leaving the set.

Figure 2.2: Illustration of Remark 2.2.
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Example 2.2. Let us discuss a list of examples illustrating the definition of open sets:

• Open interval (a, b) is open.

• Closed intervals [a, b] are not open as are intervals of the form [a, b) and (a, b].

• The open ball Br(p) for p ∈ Rd is open. To see that we pick an arbitrary
q ∈ Br(p) and show that there exists an δ > 0 such that Bδ(q) ⊆ Br(p).
This is the case if we choose δ ∈ (0, r − ρ(p, q)).

Figure 2.3: The open ball Br(p) is open.
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• The whole space Rd is open for any n ≥ 1 as well as ∅.
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2.3 Closed sets

To introduce the notion of a closed set, we need to consider points with certain properties.
We call them limit points as they can be reached as a limit of a sequence whose elements
are only from the considered set. We introduce

Definition 2.3 (Limit point of Ω ⊆ Rd).

Figure 2.4: Illustration of a limit point of Ω.
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Example 2.3. Let us discuss a list of examples illustrating the last definition:

• Let Ω = (0, 1) ⊆ R. Then, every x ∈ (0, 1), x = 0, x = 1 are limit points
of the set Ω.

• Consider the open ball Br(x). Then all points x0 ∈ Br(x) are limit points of
Br(x) as well as all points x0 ∈ {y ∈ Rd : ρ2(y, x) = r}︸ ︷︷ ︸

Called the (d−1)-sphere of radius r.

.

• Consider {−17, 4, 6, 264, 1034}. This set has no limit points. Similarly, N,
N0, and Z have no limit points.

• The set of all limit points of Q is R. This follows from the density1 of the
rational numbers in the real numbers.

1This means that for every x ∈ R, the ball (x − r, x + r) contains a rational number however small
one chooses r > 0. This was a consequence of Archimedes’ theorem which we proved on a Problem
Sheet in Analysis 1.
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Proposition 2.1 (Characterization of limit points of Ω ⊆ Rd).
Let Ω ⊆ Rd. Then, x ∈ Rd is limit point of Ω if and only if

Proof.

The proof of this proposition is an exercise.
You might want to put it here.



CHAPTER 2. OPEN, CLOSED, AND COMPACT 39

From Proposition 2.1, we get

Corollary 2.1.

Let Ω ⊆ Rd be an open set. Every x ∈ Ω is a limit point of Ω.

Exercise 2.2. Prove Corollary 2.1. It might help to revisit the definition of an open set
and to draw a picture.

Remark 2.3. Note that this corollary does not imply that all limit points are contained
in Ω. It merely states that open sets can not have isolated points, see Definition 2.4.
Take B1(0) as an example. All x ∈ B1(0) are limit points of B1(0) but also the
points of {y ∈ Rd : ‖y‖2 = 1} are limit points and are not contained in B1(0).

Exercise 2.3. Prove that the set of limit points of a finite set {x1, . . . , xn} ⊆ Rd,
n ∈ N is the set ∅. Again, it might help to draw a picture of the situation and to take
into account what we have proven about limit points.
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Again from Proposition 2.1, we get immediately

Corollary 2.2.

Let Ω ⊆ Rd and x ∈ Rd be a limit point of Ω. Then there exists a sequence
(xn) ⊆ Ω \ {x} such that (xn) → x.

Exercise 2.4. Prove the converse of Corollary 2.2. That means to prove the following:
Let Ω ⊆ Rd, x ∈ Rd. If there exists a sequence (xn) ⊆ Ω \ {x} with (xn) → x,
then x is a limit point of Ω.
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For later use, let us introduce the notion of an isolated point.

Definition 2.4 (Isolated point of Ω ⊆ Rd).
Let Ω ⊆ Rd. Then, x ∈ Ω is called an isolated point of Ω if and only if

It follows immediately from this definition, that limit points can not be isolated. See
also Proposition 2.1.

Figure 2.5: Illustration of an Isolated point with neighbourhood Bε(x).
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In Analysis 1, we understood that for a sequence (an) the notion (an) → a means
that for all ε > 0 there are only finitely many an with an ∈ R \ (a− ε, a+ ε).

Theorem 2.1.

A sequence (an) ⊆ Rd is convergent to a ∈ Rd if and only if

for all ε > 0 the set {n ∈ N : an /∈ Bε(a)} is finite.a

aWe could alternatively state that for all ε > 0 the complement of the set {n ∈ N : an ∈
Bε(a)} ⊆ N must be finite for (an) to converge to a.

Proof.

[⇒]: Let (an) ⊆ Rd be convergent with (an) → a..
Then, there exists for all ε > 0 an n0 ∈ N such that

∀n ∈ N, n ≥ n0, ‖an − a‖2 < ε,

i.e an ∈ Bε(a).
Thus, for all ε > 0 there are at most n0 − 1 elements an for which
an /∈ Bε(a).

[⇐]: We assume that {n ∈ N : an /∈ Bε(a)} is a finite set for all
ε > 0.
Let n0 = n0(ε) be the maximum of this set.
Then, for all ε > 0, we have ‖an − a‖2 < ε for all n ≥ n0 + 1.
Thus, an ∈ Bε(a) for n ≥ n0 + 1.
Hence, (an) → a.

This concludes the proof.
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Exercise 2.5. Find an example which shows that the following statement is not true.
A sequence (an) ⊆ Rd is convergent to a ∈ Rd if and only if for all ε > 0 the set
{k ∈ N : xk ∈ Bε(a)} is infinite.

Now, we give a name to sets that contain all their limit points.

Definition 2.5 (Closed set).
A set Ω ⊆ Rd is said to be closed if and only if

Figure 2.6: First diagrammatic thoughts about closed sets.



CHAPTER 2. OPEN, CLOSED, AND COMPACT 44

Example 2.4. Let us discuss a list of examples illustrating the definition of closed sets:

• Closed intervals [a, b] are closed.

• Open intervals (a, b) are not closed as are intervals of the form [a, b) of (a, b].

• The whole space Rd is closed for any d ≥ 1.

• The set ∅ is closed.

• All finite sets {x1, . . . , xn} ⊆ Rd, n ∈ N are closed. (Hint: Look back at
Exercise 2.3.
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Reading 2.

The rest of this section is this week’s reading. The reading ends on page 50.

Example 2.5.

Let us show that the set

Br(x) :=
{
y ∈ Rd : ρ(x, y) ≤ r

}
,

is closed. To show that, we have to show that no point not contained in Br(x) is
limit point of Br(x). Let y ∈ Rd \ Br(x). Then there exists ε > 0, e.g. given
by ε = 1

2(ρ(x, y) − r), such that Bε(y) ∩ Br(x) = ∅. Thus, y can not be limit
point of Br(x). Thus, all limit points of Br(x) must be contained in Br(x) which
concludes the argument.

Figure 2.7: Illustration of the argument for the closedness of Br(x).
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Let us state an alternative characterization of closed sets by

Proposition 2.2 (Characterization of closed sets by limits).
Let Ω ⊆ Rd. Then, Ω is closed if and only if for all Cauchy-sequences (xn) ⊆ Ω
we have that lim

n→+∞
xn = x ∈ Ω.

Exercise 2.6. Illustrate Proposition 2.2 by giving examples and counterexamples.

Exercise 2.7. Prove the equivalence stated in Proposition 2.2.
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Remark 2.4. Even though the names might suggest otherwise, open and closed

are not mutually exclusive. For example, the set R is open and closed as is Rd in
general. Also the set ∅ is open and closed. See also Proposition 2.2.

Theorem 2.2 (Characterization of open/closed sets).
A set Ω ⊆ Rd is

• open if and only if Ωc = Rd \ Ω is closed, and

• closed if and only if Ωc = Rd \ Ω is open.

Exercise 2.8. Prove Theorem 2.2.
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We also have the following result regarding operations on open/closed sets.

Theorem 2.3.

Let Ω1, Ω2 ⊆ Rd be open/closed.a Then, the sets Ω1 ∩ Ω2 and Ω1 ∪ Ω2, and
Ω1 × Ω2 are open/closed as well.

aWe will always assume that the open balls are defined with respect to ‖ · ‖2 unless otherwise
stated.

Remark 2.5. To fully understand the following arguments, you should always try to
draw a picture of the siltation.
Especially the case Ω1 ×Ω2 is not trivial. Take for instance Ω1 = (0, 1), Ω2 = (0, 1)
and then think about how to find a ball around a point x = [x1, x2]T ∈ (0, 1)×(0, 1)
by knowing that there are suitable ε1, ε2 > 0 such that (x1 − ε1, x1 + ε1) ⊆ (0, 1),
(x2 − ε2, x2 + ε2) ⊆ (0, 1).
Specifically look at (x1 − ε1, x1 + ε1) × (x2 − ε2, x2 + ε2). What is the maximal
radius of a ball inside this rectangle that you can find?

Proof.

Let us prove the assertions for open sets. The rest is left to you.2

Let Ω1 and Ω2 be open.

We prove the openness of Ω1 ∩ Ω2.
If Ω1 ∩ Ω2 = ∅, then the intersection is open as we have shown earlier.
If Ω1 ∩ Ω2 6= ∅, let x ∈ Ω1 ∩ Ω2.
Then, there exists an ε1 > 0 such that Bε1(x) ⊆ Ω1 and an ε2 > 0
such that Bε2(x) ⊆ Ω2.
Thus, we have that Bε(x) ⊆ Ω1 ∩ Ω2 if ε = min{ε1, ε2}.

2Keep Theorem 2.3 and De Morgan’s laws in mind. See also your notes from Mathematical
Thinking.
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Thus, Ω1 ∩ Ω2 is open.

Let now x ∈ Ω1 ∪ Ω2. Then, there exists ε1, ε2 > 0 such that
Bε1(x) ⊆ Ω1 or Bε2(x) ⊆ Ω2.
Thus, Bε1(x) ⊆ Ω1 ∪ Ω2 or Bε2(x) ⊆ Ω1 ∪ Ω2.
Hence, Ω1 ∪ Ω2 is open.

Finally, let x ∈ Ω1 × Ω2.
Then, we have x = (ω1, ω2) ∈ Ω1 × Ω2.
There exist ε1, ε2 > 0 such that Bε1(ω1) ⊆ Ω1 and Bε2(ω2) ⊆ Ω2.
Taking ε := min{ε1, ε2}, we obtain that

Bε(x)︸ ︷︷ ︸
ε−ball in Ω1×Ω2.

⊆ Bε1(ω1)︸ ︷︷ ︸
ε1−ball in Ω1

× Bε2(ω2)︸ ︷︷ ︸
ε2−ball in Ω2

⊆ Ω1 × Ω2.

Thus, the set Ω1 × Ω2 is open.
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2.4 Compactness

This last section of the chapter is about compact sets. Compact sets are always a bit
baffling to people when they encounter them first and it takes some time to understand
their usefulness. Keep an open mind and study the following definitions carefully.

Definition 2.6 (Open cover).
Let Ω ⊆ Rd be a subset and {Oα : α ∈ I} be a collection of open sets
Oα ⊆ Rd indexed by some (possible uncountable) index set I . Then we say that
{Oα : α ∈ I} is an open cover of Ω if and only if

Ω ⊆
⋃

α∈I

Oα,

i.e. for all x ∈ Ω there exists an α ∈ I such that x ∈ Oα.

Example 2.6. We discuss a couple of examples for open covers of subsets of Rd.

1. Let Ω = {1, 2, 3}. Then, the family {O1,O2,O3} = {Oα : α ∈ {1, 2, 3}}
with O1 = (1

2 ,
3
2), O2 = (3

2 ,
5
2), and O3 = (5

2 ,
7
2) is an open cover.

2. The set Ω = [0, 1] is covered by {O1,O2} = {Oα : α ∈ {1, 2}} with
O1 = (−1, 1), and O2 = (0, 2).

3. The closed square [0, 1]2 is covered by the 4 open balls of radius 1 around the
corner points, i.e. {O1, . . . ,O4} = {Oα : α ∈ {1, 2, 3, 4}} is an open
cover with O1 = B1((0, 0)), O2 = B1((1, 0)), O3 = B1((0, 1)), and
O4 = B1((1, 1)).

4. The family {Oε : ε ∈ (0,+∞)},

Oε = (−1 − ε, 1 + ε)

is an open cover of (−1, 1).
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Definition 2.7 (Finite sub-cover).
Let Ω ⊆ Rd be a subset and {Oα : α ∈ I} be an open cover of Ω. We say
that {Oα : α ∈ I} admits a finite sub-cover if and only if there exists a finite
subset J ⊆ I such that

Ω ⊆
⋃

α∈J

Oα.

Example 2.7. Consider the set [0, 1] ⊆ R. We set Oε := (−ε, 1 + ε) and then get

C := {Oε : ε ∈ (0, 1]}

as an open cover. Clearly, every Oε̃ is a finite sub-cover of C if ε̃ ∈ (0, 1].

Figure 2.8: A graphical interpretation of Example 2.7.

Definition 2.8 (Compact set).
A set Ω ⊆ Rd is called compact if and only if every open cover {Oα : α ∈ I}
of Ω admits a finite sub-cover.
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Remark 2.6. One also says that Ω ⊆ Rd is compact if and only if it has the Heine–
Borel property. The Heine–Borel property is that any open cover of Ω admits a finite
sub-cover.

Example 2.8. First we consider a couple of non-examples and two simple first examples.

1. The set (0, 1) is not compact as the cover {(ε, 1) : ε > 0} does not admit
a finite sub-cover. Notice that (ε2, 1) ⊃ (ε1, 1) if 0 < ε2 < ε1 but never
(0, 1) ⊆ (ε, 1) however small one chooses ε > 0.

2. R is not compact as the open cover {(−R,R) : R ∈ R>0},

R =
⋃

R>0
(−R,R),

does not admit a finite sub-cover.

3. Rd is not compact as the open cover {(−R,R)d : R ∈ R>0},

Rd =
⋃

R>0
(−R,R)d

does not admit a finite sub-cover.

4. The set ∅ is compact.

5. A point {x} (and with that any finite set) is a compact set since from any
open cover {Uα : α ∈ I}, we can choose always one Uα that covers {x}.
Compare the Definition of open sets Definition 2.2.
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Theorem 2.4.

Let a, b ∈ R with a ≤ b. Then, the closed interval

[a, b] = {x ∈ R : a ≤ x ≤ b}

is compact.

How do we prove that?

Proof.

We assume that there exists an open cover {Oα : α ∈ I} of [a, b] which
does not admit a finite sub-cover.
We bisect the interval into

[a, b] = [a, c1] ∪ [c1, b], c1 = a+ b

2 .

Now, {Oα : α ∈ I} also covers [a, c1] and [c1, b].
At least one of them does not admit a finite sub-cover.
We call the non-coverable interval I1 and repeat the bisection and the same
argument.
We then obtain a sequence of intervals with

The length of In is given by |b− a|2−n.
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By construction, none of the In can be covered by a finite sub-cover of
{Oα : α ∈ I}.

We pick a sequence (xn) by picking an xn ∈ In.
By construction, for all m,n ≥ n0, we have xn, xm ∈ In0 . Hence, we
have

Thus, the sequence (xn) ⊆ [a, b] is a Cauchy sequence and, by a result of
Analysis 1, there exists an x ∈ [a, b] such that (xn) → x.

Since {Oα : α ∈ I} covers [a, b] there must exist an α ∈ I such
that x ∈ Oα.
Since Oα is open there exists an ε > 0 such that Bε(x) ⊆ Oα.
Since (xn) → x, we can choose n0 ∈ N such that

for all n ≥ n0.

Then, y ∈ In0 implies

This means In0 ⊆ Bε(x) ⊆ Oα and, hence, In0 is covered by a single
element of {Oα : α ∈ I}.
This contradicts our assumption since
This concludes the proof.
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Using the same technique, one can show

Theorem 2.5.

Let n ∈ N and ai ≤ bi real numbers for i = 1, . . . , n. Then, the cuboid

[a1, b1] × [a2, b2] × . . .× [ad, bd] =
d×

i=1
[ai, bi] ⊆ Rd

is compact.

2.4.1 Properties of compact sets

Theorem 2.6 (Compact sets are closed).
Let K ⊆ Rd be compact. Then, K is closed, i.e. contains all its limit points.

Let us think a moment how to prove this result:
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Proof.

Let x ∈ Rd be a limit point of K with x /∈ K .
We show that K can then not be compact.
We do that by constructing an open cover of K which has no finite sub-
cover.
Let

Oε := (Bε(x))c = {y ∈ Rd : d(y, x) > ε}

= Rd \ {y ∈ Rd : d(y, x) ≤ ε}.

The sets Oε are open (see Proposition 2.2) and {Oε : ε ∈ (0,+∞)}
covers K since

Rd \ {x} =
⋃

ε>0
Oε.

Since x is a limit point of K , by Proposition 2.1, we have that for every
ε > 0, the set Bε(x) contains infinitely many points of K .
Thus, {Oε : ε ∈ (0,+∞)} does not admit a finite sub-cover.
This concludes the proof.
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Theorem 2.7 (Compact sets are bounded).
Let K ⊆ Rd be compact. Then, K is a bounded set, i.e. there exists an R > 0
such that K ⊆ BR(0). a

aClearly, if a set A ⊂ Rd satisfies A ⊆ BR(0) for some R > 0, then ∀a ∈ A : ‖a‖2 ≤ R.

Proof.

Theorem 2.8.

If K ⊆ Rd is compact, then every sequence (xn) ⊆ K has a convergent subse-
quence with limit in K .

Exercise 2.9. Prove Theorem 2.8. (Hint: Bolzano–Weierstrass)
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We now prove a property of closed sub-sets of compact sets.

Theorem 2.9.

Let K ⊆ Rd be compact and C ⊆ K be closed. Then, C is compact.

Remark 2.7. A mistake that one may make at the beginning is the following: Since K
is compact, we have that every open cover (Oα)α∈I contains a finite sub-cover with
K ⊆ Oα1 ∪ · · · ∪ Oαk

. Since C ⊆ K , we have C ⊆ Oα1 ∪ · · · ∪ Oαk
. This does

not prove the claim in Theorem 2.9 since this only concerns the covers which also cover
Ω. However, one has to prove that every open cover of C admits a finite sub-cover.

Proof of Theorem 2.9.



CHAPTER 2. OPEN, CLOSED, AND COMPACT 61

The main theorem of this section is the Heine–Borel Theorem. Before we state it,
some words about its significance3: Students sometimes struggle with the Heine–Borel
Theorem; the authors certainly did the first time it was presented to them. This theo-
rem can be hard to motivate as the result is subtle and the applications are not obvious.
Its uses may appear in different sections of the course textbook and even in different
classes. Students first seeing the theorem must accept that its value will be-

come apparent only in time. Indeed, the importance of the Heine–Borel Theorem
cannot be overstated. It appears in every basic analysis course, and in many point-set
topology, probability, and set theory courses. Borel himself wanted to call the theorem
the first fundamental theorem of measure-theory, a title most would agree is appropriate.

Let us now state and prove the result.

Theorem 2.10 (Heine–Borela).
A set K ⊆ Rd is compact if and only if it is closed and bounded.

aNamed after the German mathematician Eduard Heine (1821–1881) and the French mathe-
matician Émile Borel (1871–1956).

Proof of Theorem 2.9.

3This is a quote from Nicole R. Andre, Susannah M. Engdahl, and Adam E. Parker’s website to
be found here. Their work is titled An Analysis of the First Proofs of the Heine-Borel Theorem and is
worth a read.

https://www.maa.org/book/export/html/157379
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3
Limits of functions

Let us recall some notation. We consider sets Ω ⊆ Rd and functions from Ω to Rm.
In symbols, we consider  f : Ω → Rm

x 7→ f(x) = f(x1, . . . , xd)
.

We recall that Ω is then called the domain of f , in symbols

dom(f) = Ω

and Rm is called the co-domain. Further, we define the image of f by

im(f) :=
{
f(x) : x ∈ dom(f)}.

In general, we have im(f) ⊆ Rm.

If f : Ω → Rm, that means that for every x ∈ Ω, the value f(x) belongs to Rm.
Now let us use some Linear Algebra. Let {ei : i = 1, . . . ,m} be the standard basis
of Rm. Then, for every x ∈ Ω, we can write

f(x) =
m∑

i=1
fi(x)ei =


f1(x)

...
fm(x)

 ,

where
∀i ∈ {1, . . . ,m} : fi(x) = 〈f(x) , ei〉.

62
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How the properties of f and the fi, i = 1, . . . ,m are connected, will be discussed
during this and further chapters of the present notes.

Example 3.1. Change to polar coordinates is a function
[0,∞) × [0, 2π) → R2r
φ

 7→

r cos(φ)
r sin(φ)

 .

The co-domain and image is R2.

Example 3.2. We consider the function f : R3 → R

x 7→ ‖x‖2 =
√
x2

1 + x2
2 + x2

3
.

The co-domain is R and im(f) = {x ∈ R : x ≥ 0} =: R≥0.
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3.1 Some priming

Let us suppose that we have a f : (0, 1) → R and would like to define

lim
x→x0

f(x) (3.1.1)

for an x0 ∈ (0, 1).

Let is consider a sequence (xn) ⊆ (0, 1) such that (xn) → x0.
Then we can consider (f(xn)) ⊆ R.
How could we define (3.1.1) with that?

Is that enough?
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Can we rewrite this without sequences?

3.1.1 An abstract point of view
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3.2 Limits of Rm-valued functions

Definition 3.1 (Limit of a Rm–valued function).
Let ρ be a metric on Rd, ρ∗ be a metric on Rm. Suppose that Ω ⊆ Rd and that
x0 ∈ Rd is a limit point of Ω. Then, for f : Ω → Rm, we write

y0 = lim
x→x0

f(x)

for a y0 ∈ Rm if and only if

∀ε > 0 ∃δ = δ(ε) > 0 s.t.

(∀x ∈ Ω, 0 < ρ(x, x0) < δ) ⇒ ρ∗(y0, f(x)) < ε.
(3.2.1)

Remark 3.1. If ρ and ρ∗ are given by a norm ‖ · ‖, i.e. ρ(x, y) = ‖x − y‖,
ρ∗(x, y) = ‖x− y‖∗, then (9.1.2) is given by

∀ε > 0 ∃δ = δ(ε) > 0 s.t.

(∀x ∈ Ω, 0 < ‖x− x0‖ < δ) ⇒ ‖f(x) − y0‖∗ < ε.

From now on, we will use the ‖ · ‖2 norm to define both, ρ and ρ∗. Then, (3.2.1) is
given by

∀ε > 0 ∃δ = δ(ε) > 0 s.t.(
∀x ∈ Ω, 0 < ‖x− x0‖2︸ ︷︷ ︸

=

√
d∑

i=1
|xi−x0,i|2

< δ
)

⇒ ‖f(x) − y0‖2︸ ︷︷ ︸
=
√

m∑
i=1

|fi(x)−y0,i|2

< ε.

Obviously, the ‖ · ‖2 are not the same even though we use the same symbols.
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Remark 3.2. To prove that a function has a limit at a point x0/is continuous at

x0, we have to show that

ρ(x, x0) < δ ⇒ ρ∗(y0, f(x)) < ε.

This is usually done by showing that there is a constant C > 0 such that

ρ∗(y0, f(x)) ≤ Cρ(x, x0). (3.2.2)

Setting then δ = ε

C
, we obtain

∀ε > 0 ∃δ > 0 ∀x : ρ(x, x0) < δ ⇒ ρ∗(y0, f(x)) < ε.

This is the scheme that you will see over and over again in the examples and proofs of
theorems involving continuity. It could be that one can not prove (3.2.2) but something
of the kind

ρ∗(y0, f(x)) ≤ Cg
(
ρ(x, x0)

)
for a ‘well-behaved’ (monotone) function g. Then one can have ρ(x, x0) < δ implies
ρ∗(y0, f(x)) < ε if δ = g−1( ε

C

)
. If f(x0) is not defined, as it happens for limits

sometimes, one would ask

0 < ρ(x, x0) < δ ⇒ ρ∗(y0, f(x)) < ε

but the strategies are exactly the same.

Exercise 3.1. Set m = d = 1 and write Definition 3.1 down explicitly (with the
correct distances) in that case.
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3.3 Examples

Example 3.3. Consider f : R → R given by f(x) = 2x + 1. For R, we have
ρ(x, y) = |x− y| as we learned in Analysis 1.

We show that lim
x→1

f(x) = 3.

We first think about what we have to prove and then do it. We keep in mind Remark
3.2.

• What do we have to prove?

• Let us get at it then:
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Example 3.4. Consider f : R2 → R, f(x1, x2) = x1 + x2.

We show that lim
x→0

f(x) = 0.

Again, we first think about what we have to prove and then do it. We keep in mind
Remark 3.2.

• What do we have to prove?

• Let get at it then:
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Example 3.5. Consider f : R2 \ {0} → R, where

f(x1, x2) = x2
1 + 3x2

2√
x2

1 + x2
2
.

We prove that lim
x→0

f(x) = 0.

Again, we first think about what we have to prove and then do it. We keep in mind
Remark 3.2.

• What do we have to prove?

• Let get at it then:
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Now an example that is a bit more complicated.

Example 3.6. Consider f : R3 \ {0} → R2 given by
x1

x2

x3

 7→


x1+2

√
x2

2+x2
3 sin(x3)

(x2
1+x2

2+2x2
3)

1
4

x3 + 1

 .

We show that lim
x→0

f(x) =
[
0 , 1

]
.

Again, we first think about what we have to prove and then do it. We keep in mind
Remark 3.2.

• What do we have to prove?

• Let get at it then:
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Remark 3.3. The last example illustrates the fact mentioned in Remark 3.2 that a
control of ‖f(x) − [0, 1]T ‖2 in terms of ‖x‖2 does not always mean that

‖f(x) − [0, 1]T ‖2 ≤ C‖x‖2

but that there could be a function g, in this case g(x) =
√
x, such that

‖f(x) − [0, 1]T ‖2 ≤ Cg(‖x‖2).
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3.4 Characterization of limits via sequences

Let us think a moment about a function f : (0, 1) → R. How could we define the
limit of the function f at a point x0 ∈ (0, 1) (or a limit point x0 of (0, 1)) if we
wanted to use sequences?

Thus, we are inspired to the following

Theorem 3.1 (Sequence characterization of limits of Rm-valued functions).
Suppose Ω ⊆ Rd and x0 ∈ Rd be a limit point of Ω and let f : Ω → Rm.
Then

lim
x→x0

f(x) = y0

for an y0 ∈ Rm if and only if

lim
n→+∞

f(xn) = y0

for every sequence (xn) ⊆ Ω \ {x0} with (xn) → x0.

Remark 3.4. Remember that x0 ∈ Rd, x0 limit point of Ω means that x0 does not
necessarily belong to Ω. See also Definition 3.1. For instance, if one has f : (0, 1) →
R, one can investigate the limit of f at x0 = 1 and x0 = 0 even if the function is
not defined there.
Further (xn) ⊆ Ω \ {x0} grantees that 0 < ‖xn − x0‖2 for all n ∈ N. (See the
proof.)



CHAPTER 3. LIMITS OF FUNCTIONS 74

Remark 3.5. The requirement that f(xn) → y0 for all sequences (xn) ⊆ Ω\{x0},
(xn) → x0 is not superfluous.
Think about how it could happen that there are two sequences (xn),(x̃n) as above for
which f(xn) → y0 but f(x̃n) 6→ y0.

Can you come up with an example?

Here is an example from me:
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Proof of Theorem 3.1.
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In the spirit of the remarks made in Remark 3.5, the last theorem can be used to find
out whether limits exist. If we find two sequences with different limits, we can conclude
that the function has no limit at that point.

Example 3.7. Let f : R2 \ {0} → R given by

f(x1, x2) = x2
1 + 3x2

2
x2

1 + x2
2
.

We take the sequences [pn, 0]T and [0, pn]T with pn ∈ [0,+∞) for all n ∈ N and
(pn) → 0. We have

f(pn, 0) = p2
n + 0
p2

n + 0 = 1,

f(0, pn) = 0 + 3p2
n

0 + p2
n

= 3.

Since the limits are not the same
lim
x→0

f(x)

does not exist.
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3.5 Arithmetic rules for limits

The next theorem follows immediately from the arithmetic rules for sequences that we
have proved in Analysis 1 if combined with Theorem 3.1. We define the functions fg,
λf , and f + g pointwise, i.e. f + g : Ω → Rm

x 7→ f(x) + g(x)
,

 λf : Ω → Rm

x 7→ λf(x)
, and

 fg : Ω → R

x 7→ f(x)g(x)

Theorem 3.2 (Arithmetic rules for limits).
Let Ω ⊆ Rd, x0 ∈ Rd be a limit point of Ω and

f : Ω → R, g : Ω → R.

Suppose
lim

x→x0
f(x) = y0, lim

x→x0
g(x) = y1

for y0, y1 ∈ R. Then

1. lim
x→x0

(λf)(x) = λy0, for all λ ∈ R,

2. lim
x→x0

(f + g)(x) = y0 + y1,

3. lim
x→x0

(fg)(x) = y0y1, and

4. lim
x→x0

(f
g

)
(x) = y0

y1
, provided y1 6= 0.

Exercise 3.2. Try to find out what results hold if f and g are Rm-valued for m ≥ 1.
Can you prove them? (Hint: Remember Problem Sheet 1 where we have proved a result
that might help. The Mock Class Test and the Class Test also contained useful results
for this exercise.)
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3.6 One sided limits of functions on R

Reading 3. The entire Section 3.6 is this week’s reading. If you have questions, write
them down, discuss them with friends, or ask your tutor, me, or the MLSC staff.

Definition 3.2 (Right-sided limit of f ).
Let I ⊆ R, f : I → R, and x0 ∈ R limit point of I . Then, we write
f(x0+) = y0 for a y0 ∈ R if and only if

lim
n→+∞

f(xn) = y0

for any sequence (xn) ⊆ R with xn ∈ I and xn > x0 for all n ∈ N0 and
(xn) → x0.

In the same way, we define

Definition 3.3 (Left-sided limit of f ).
Let I ⊆ R, f : I → R, and x0 ∈ R limit point of I . Then, we write
f(x0−) = y0 for a y0 ∈ R if and only if

lim
n→+∞

f(xn) = y0

for any sequence (xn) ⊆ R with xn ∈ I and xn < x0 for all n ∈ N0 and
(xn) → x0.

We may also write

f(x0+) = lim
x→x0+

f(x) = lim
x→x0+0

f(x),

f(x0−) = lim
x→x0−

f(x) = lim
x→x0−0

f(x).
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Remark 3.6. Definition 3.2 can be rephrased as (ε, δ)-criterion in the following way:
a function f : (a, b) → R has a right limit at x0 ∈ [a, b) iff

∃y0 ∈ R s.t. ∀ε > 0 ∃δ > 0 : 0 < h < δ ⇒ |f(x0 + h) − y0| < ε.

Similarly, one rephrases Definition 3.3.

We state the following result without proof.

Theorem 3.3 (Limits by one-sided limits).
Let I ⊆ R, f : I → R, and x0 ∈ R be a limit point of I . Then,

lim
x→x0

f(x) = y0

for a y0 ∈ R if and only if

lim
x→x0−

f(x) = y0 and lim
x→x0+

f(x) = y0.

Example 3.8. Let f : R \ {0} → R be defined by

f(x) = x

|x|
.

Then f(x) = 1 for x > 0 and f(x) = −1 for x < 0. Thus,

f(0+) = lim
x→0+

f(x) = 1,

f(0−) = lim
x→0−

f(x) = −1.

Example 3.9. The function f : R → R given as

f(x) =


1
x : x > 0
0 : x ≤ 0

.

The limit f(0−) exists and is equal to 0 and the limit f(0+) does not exist.
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4
Continuity

Often, students have heard about continuity in school and in other modules. Sometimes
that means that students think they know what continuity is and fail to pay their utmost
attention while I am explaining. The result is often that students still think they know
what continuity is but that I am bad at explaining it because they do not understand what
I am saying. This is the wrong approach. Continuity is, once properly understood, not the
most difficult concept but it is also far from being trivial and far from the ‘school concept’
of not taking pens from paper while graphing. Mathematicians grappled centuries with
its precise formulation.
Be open to challenge your beliefs and pay your utmost attention. One reason for the
guided notes is to give you the time to engage in thinking about the contents of the
lecture while the lecture unfolds.

4.1 We start by thinking about non-continuous

functions

Let us think about the following situation. Consider f : [−1, 1] → R given by

f(x) =

 c1 : x < 0
c2 : x ≥ 0

where c1 and c2 are arbitrary real numbers with c1 6= c2. To understand that function,
let us make a sketch.

80
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Figure 4.1: Sketch of the function f .

We say that the function has a jump at x = 0. Be careful with your intuition though,
the function 

f : [−1, 1] \ {0} → R

x 7→

 c1 : x < 0
c2 : x > 0

does not have a jump. Once we stated the definition of continuity, you should be able
to see that the function is actually continuous on its domain.
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How could we formalise what it means to have a jump?

What else could is described by this definition?

Figure 4.2: Another kind of discontinuity.
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4.2 Definition of continuity

We are now ready to state another central notion of Analysis:

Definition 4.1 (Continuity at a point of Rm valued functionsa).
Let ρ and ρ∗ be metrics on b on Rd and Rm respectivelyc and Ω ⊆ Rd with
x0 ∈ Ω. Then, f : Ω → Rm is called continuous at x0 if and only if

∀ε > 0 ∃δ = δ(ε) > 0 s.t.(
x ∈ Ω : ρ(x, x0) < δ

)
⇒ ρ∗(f(x), f(x0)) < ε.

(4.2.1)

aThis definition of continuity is called the (ε, δ)-definition of continuity.
bSee Definition 1.9.
cAlso note that the metrics ρ and ρ∗ are generic and not necessary the ones on the basis of

‖ · ‖p as in Example 1.5.

Let us rewrite the (ε, δ)-definition in plain English:

Remark 4.1. If ρ and ρ∗ are given by norms ‖ · ‖ and ‖ · ‖∗, i.e. ρ(x, y) = ‖x−y‖,
ρ∗(x, y) = ‖x− y‖∗. Then (9.1.2) is given by

∀ε > 0 ∃δ = δ(ε) > 0 s.t.

(∀x ∈ Ω, ‖x− x0‖ < δ) ⇒ ‖f(x) − f(x0)‖∗ < ε.

From now on, we will use the ‖ · ‖2 norm to define both, ρ and ρ∗. Thus, (9.1.2) is
given by

∀ε > 0 ∃δ = δ(ε) > 0 s.t.

(∀x ∈ Ω, ‖x− x0‖2 < δ) ⇒ ‖f(x) − f(x0)‖2 < ε.
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Obviously, the ‖ · ‖2 are not the same even though we use the same symbols:

‖x− x0‖2 =

√√√√√ d∑
i=1

|xi − x0,i|2,

‖f(x) − f(x0)‖2 =
√√√√ m∑

i=1
|f(x)i − f(x0)i|2.

Here, we denoted
x0 =

[
x0,1, . . . , x0,d

]T
and the symbols f(x)i, f(x0)i denote the ith component of the vectors f(x) and
f(x0) respectively. With the notation introduced in Chapter 3, we can write f(x)i =
fi(x) and f(x0)i = fi(x0).

Remark 4.2. In the definition of convergence, see Definition 1.11, the n0 is a function
of ε. Here, the δ is, in general, a function of ε (and x0).
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Remark 4.3. A function f can only be continuous where it is defined, i.e it makes no
sense to ask about the continuity of a function at points x0 where f(x0) does not exist.
For example, the function

f(x) =

 −1 : x < 0
1 : x > 0

(4.2.2)

is continuous onR\ {0}, therefore, it makes no sense to ask for continuity at x0 = 0.
However, one can ask whether the limits of f(x) for x → x0 exists, i.e. whether

lim
x→x0

f(x)

exists.

Figure 4.3: Drawing of (4.2.2).



CHAPTER 4. CONTINUITY 86

Figure 4.4: Illustration of the definition of continuity for m = d = 1.

With the notion introduced in Section 2.1, we can rewrite

ρ(x, x0) < δ ⇒ ρ∗(f(x), f(x0)) < ε

as
x ∈ Bδ(x0) ⇒ f(x) ∈ Bε(f(x0))

or
f(Bδ(x0)) ⊆ Bε(f(x0)). (4.2.3)

Here, we use additionally the following notation. Let f : A → B and E ⊆ A. Then,
the set f(E) is defined by

f(E) := {f(x) : x ∈ E} ⊆ B.



CHAPTER 4. CONTINUITY 87

Definition 4.2 (Rephrasing Definition 4.1 for Ω open).
Let Ω ⊆ R open, x0 ∈ Ω. A function f : Ω → Rm is continuous at x0 if and
only if

∀ε > 0 ∃δ > 0 f (Bδ(x0)) ⊆ Bε(f(x0)).

Remark 4.4. This definition is, as the title says just as rephrasing. It does not ‘replace’
Definition 4.1. When asked for the definition of continuity, you give Definition 4.1
adapted to the proper context, i.e. with the right metrics.

Figure 4.5: Illustration of continuity. Especially (4.2.3).
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Definition 4.3 (Continuity of Rm valued functions).
Let Ω ⊆ Rd. Then, a function f : Ω → Rm is said to be continuous (on Ω)

if and only if it is continuous at all x0 ∈ Ω.a
aSee Definition 4.1.

Definition 4.4 (Definition 4.3 as (ε, δ)-criterion w.r.t. ‖ · ‖2).
Let Ω ⊆ Rd. Then, a function f : Ω → Rm is said to be continuous (on Ω)

if and only if

∀x0 ∈ Ω ∀ε > 0 ∃δ = δ(x0, ε) > 0 s.t.(
x ∈ Ω : ‖x− x0‖2 < δ

)
⇒ ‖f(x) − f(x0)‖2 < ε.
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Using Definition 3.1 and Theorem 3.1, it holds immediately

Theorem 4.1 (Limit characterization of continuity).
Let Ω ⊆ Rd, f : Ω → Rm, and x0 ∈ Ω limit point of Ω. Then, f is continuous
at x0 if and only if

lim
x→x0

f(x) = f(x0)

and if and only if for all (xn) ⊆ Ω \ {x0} with (xn) → x0 holds

lim
n→+∞

f(xn) = f(x0).

Exercise 4.1. In the case d = 1, we have that f : (−1, 1) → R is continuous at
x0 ∈ (−1, 1) if and only if

∀ε > 0 ∃δ > 0 s.t.(
∀x ∈ (−1, 1), |x− x0| < δ

)
⇒ |f(x) − f(x0)| < ε.

(4.2.4)

Prove, as stated in Theorem 4.1, that (4.2.4) is equivalent to

∀(xn) ⊆ (−1, 1) \ {x0}, (xn) → x0 ⇒
(
f(xn)

)
→ f(x0).
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4.3 Examples

Example 4.1. Consider f : R → R, f(x) = x2. We want to show that f is
continuous at all x0 ∈ R.

• What do we have to show?

• Let us show it then. We take Remark 3.2 into consideration.
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The continuity of f(x) = x2 in the last example could be proved slightly differently.

Example 4.2. Consider f : R → R, f(x) = x2. We show that this function is
continuous at all x0 ∈ R.
We still have to prove that

∀ε > 0 ∃δ > 0 : |x− x0| < δ ⇒ |f(x) − f(x0)| < ε.

We reformulate |x− x0| < δ by setting x = x0 + δ′. Then

Thus, we get

|f(x) − f(x0)| =
∣∣∣(x0 + δ′)2 − x2

0
∣∣∣ =

∣∣∣2x0δ
′ + δ′2∣∣∣

= |δ′||2x0 + δ′|

≤ |δ′|
(
2|x0| + |δ′|

)
≤ (2|x0| + 1) |δ′|.

If we restrict δ ≤ 1, we finally have to choose
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Example 4.3. Consider f : R → R given by f(x) = 2x2 − 8x+ 6. Again, let us
prove continuity everywhere.

• What do we have to prove?

• What is the plan?

• Let us work it out then.
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Example 4.4. Let f : [0,+∞) → R with f(x) =
√
x. We prove that f is

continuous on R.

• What do we have to show?

• Working it out.

Let x0 = 0 and ε > 0. We get

|x| < δ ⇒ |
√
x| =

√
|x| < ε

if we choose δ = ε2.
Now let x0 ∈ (0,+∞) and ε > 0.
We estimate

Thus, we get

|x− x0| < δ ⇒ |
√
x−

√
x0| < ε

for
δ =
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Exercise 4.2. Consider f : R3 → R2 given by
x1

x2

x3

 7→


x1+2

√
x2

2+x2
3 sin(x3)

(x2
1+x2

2+2x2
3)

1
4

x3 + 1

 ,

0
0
0

 7→

0
1

 .

We want to show, that this function is continuous at x0 =
[
0 , 0 , 0

]T
.

• What do we have to show?

• Let us work it out then.
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4.4 Discontinuity

Reading 4. This section is this week’s reading. Make sure you read it carefully. Make
sketches of the functions discussed. Record your questions and discuss them with friends
and/or the MLSC staff. If they remain, you can also discuss them with your tutors and
me.
Prove the claimed properties in the examples below where the details have been left
open.

Definition 4.5 (Discontinuous at a point for Rm valued functions).
Let Ω ⊆ Rd and x0 ∈ Ω. Then, f : Ω → Rm is called discontinuous at x0 if
and only if f is not continuous at x0.

Exercise 4.3. Write the definition of discontinuity explicitly as the negation of the
definition of continuity at a point x0. Write also a ‘sequence-version’.

Definition 4.6 (Discontinuity (explicit version)).
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Definition 4.7 (Discontinuity (sequence version)).

Example 4.5. The function f : R → R, given by

f(x) =

 1 : x 6= 0
0 : x = 0

is not continuous at x = 0 since f(0) = 0 but

lim
x→0

f(x) = 1.

The following example uses one-sided limits from Section 3.6.

Example 4.6. The function sgn : R → R, defined by

sgn(x) =


1 : x > 0
0 : x = 0

−1 : x < 0

is discontinuous at x = 0 since sgn(0) = 0 but

lim
x→0−

sgn(x) = −1 and lim
x→0+

sgn(x) = 1.
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Example 4.7. The Dirichlet-function1 (which is the characteristic function2 of Q),
given by

χ
Q(x) =

 1 : x ∈ Q
0 : x ∈ R \Q

,

is nowhere continuous.

Exercise 4.4. Prove that the function χQ from the example above is nowhere contin-
uous.

Example 4.8. The function f : R → R, given by

f(x) =

 sin
( 1

x

)
: x 6= 0

0 : x = 0

is not continuous at x = 0 as
lim
x→0

f(x)

does not exist.

Figure 4.6: The function f(x) = sin
( 1

x

)
.

1Johann Peter Gustav Lejeune Dirichlet (1805–1859) is a German mathematician.
2Also called indicator function.
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4.4.1 Classification of discontinuities

We give some names to different types of discontinuities.

Definition 4.8 (Classification of discontinuities).
Let I ⊆ R, x0 ∈ I , and f : I → R. Suppose f is discontinuous at x0. Then
we have the following classification:

1) If lim
x→x0

f(x) exists, then f has a removable discontinuity at x0.

2) If lim
x→x0

f(x) does not exist but both lim
x→x0+

f(x) and lim
x→x0−

f(x) exist,
then f has a discontinuity of the first kind, or jump discontinuity.

3) If at least one of the limits lim
x→x0+

f(x) or lim
x→x0−

f(x) do not exist, then f
has a discontinuity of the second kind.

Exercise 4.5. Give examples for all types of discontinuities defined in Definition 4.8.
Investigate the examples of this section with respect to this definition.

4.4.2 Further counterexamples in continuity

Example 4.9 (Dirichlet function).
We consider the function χQ : R → R defined by

χ
Q(x) =

 1 : x ∈ Q
0 : x ∈ R \Q

This function is at no point continuous. If we let f : R → R be a function which is
continuous and has zeros at x1, . . . , xn, then f(x)χQ(x) is continuous at the points
x1, . . . , xn.

Exercise 4.6. Find a function that is defined on R and only continuous at x0 = 3.
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Example 4.10. We consider the function f : [0, 1] → R defined by

f(x) =


1 : x = 0
1/n : x = m

n ∈ Q
0 : x ∈ R \Q

where the m
n is always considered to be in lowest terms. This function is discontinuous

at x ∈ Q and continuous at x ∈ R \Q.

Example 4.11. We consider the function f : R → R defined by

f(x) =

 x : x ∈ Q
−x : x ∈ R \Q

.

This function is only at x = 0 continuous.

Example 4.12. We consider the function f : R → R with

f(x) =

 1 : x ∈ Q
−1 : x ∈ R \Q

.

This function is nowhere continuous but its absolute value |f |(x) ≡ 1 is everywhere
continuous.

Example 4.13. For a function f : R2 → R it is not enough to be continuous in each
variable to be continuous. We consider

f(x, y) =


xy

x2+y2 : x2 + y2 6= 0
0 : x = y = 0

.

In every disc Bε(0) exist points of the form (a, a) at which f has the value 1
2 . For

every fixed value of y, say y0 ∈ R, the function g(x) := f(x, y0) is continuous.
Similarly, the function h(y) := f(x0, y) is continuous for every fixed x0 ∈ R.
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4.5 Continuity and component-wise continuity

We show now a result connecting the continuity of f with the component functions fk.
Remember that f : Ω → Rm means that

Rd ⊇ Ω 3 x 7→ f(x) =


f1(x)

...
fm(x)

 =


f1(x1, . . . , xd)

...
fm(x1, . . . , xd)

 ∈ Rm.

We have

Theorem 4.2 (Component-wise continuity at a point).
Let Ω ⊆ Rd, f : Ω → Rm with

f(x) =
[
f1(x), f2(x), . . . , fm(x)

]T
.

Then, f is continuous at x0 ∈ Ω if and only if the functions fk(x) are continuous
at x0 for all k ∈ {1, . . . ,m}.

Proof.

The proof is an exercise.
You might want to put the main points of reasoning here.
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Remark 4.5. Theorem 4.2 is useful to decide whether a function like

f(x) =


|x1 − 1|

|x2 − 2| + |3x3 − 5|
|x3 − 3|


is continuous at a point x0 as one has only to check the the component functions

f1(x1, x2, x3) = |x1 − 1|,

f2(x1, x2, x3) = |x2 − 2| + |3x3 − 5|, and

f3(x1, x2, x3) = |x3 − 3|

at the components of f(x0) which is easier.
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4.6 Operations with continuous functions

Given two functions f, g : Ω → Rm, one can define addition f + g, multiplication
fg, and multiplication by scalars (λ ∈ R) pointwise by f + g : Ω → Rm

x 7→ f(x) + g(x)
,

 λf : Ω → Rm

x 7→ λf(x)
, and

 fg : Ω → R

x 7→ f(x)g(x)

In other words, the set of functions from Ω to Rm is a real vector space.

Theorem 4.3 (Arithmetic rules of continuous functions).
Let Ω ⊆ Rd, x0 ∈ Ω. Consider f, g : Ω → R which are continuous (at x0).
Then

• λf + µg is continuous (at x0) for all µ, λ ∈ R,

• fg is continuous (at x0), and

•
f

g
is continuous (at x0) if g(x0) 6= 0.

Proof of Theorem 4.3.

Using Theorem 3.2, the proof follows whenever x0 ∈ Ω is a limit point of
the set Ω.
If x0 ∈ Ω is an isolated points, the result is easy to prove. (Exercise!)
This concludes the proof.

Exercise 4.7. Similar to Exercise 3.2, find a suitable statement in the spirit of Theorem
4.3 for functions

f, g : Ω → Rm

and prove it.
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With that we are able to make the following definition:

Definition 4.9 (The space C(Ω,Rm)).
Let Ω ⊆ Rd. Then, the set of all continuousa functions from Ω to Rm is denoted
by C(Ω,Rm). If m = 1, we write C(Ω,R) = C(Ω).

aSee Definition 4.3.

Remark 4.6. Theorem 3 shows that C(Ω,Rm) is a vector space.
Since we can multiply R-valued continuous functions, C(Ω) is even an algebra. For
further details see your Linear Algebra lecture notes.

https://en.wikipedia.org/wiki/Algebra_over_a_field
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Exercise 4.8. Prove that the functions f(x) = c, c ∈ R (constant function) and
g(x) = x are continuous as functions from R to R. Then, conclude that polynomials
of degree N are continuous. In other words, show that functions

pN(x) =
N∑

i=1
aix

i,

where the coefficients ai ∈ R for all i = 1, . . . , N are constants, are continuous.
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Theorem 4.4 (Composition of continuous functions).
Let Ω1 ⊆ Rd, Ω2 ⊆ Rm and

f : Ω1 → Ω2,

g : Ω2 → Rk.

Further suppose that f is continuous at x0 ∈ Ω1 and g is continuous at f(x0) ∈
Ω2. Then, g ◦ f is continuous at x0.

Figure 4.7: A graphical analysis of the composition theorem Theorem 4.4 and its proof.
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Proof of Theorem 4.4.
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4.7 Continuous functions f : [a, b] → R

The purpose of this section is to introduce and prove two important theorems for con-
tinuous functions

f : [a, b] → R

of one variable. These theorems are called the Intermediate Value Theorem (IVT)
and the Extremal Value Theorem (EVT) which is also commonly called Theorem of
Weierstrass3.

The proofs will reuse some strategies that we have seen in Analysis 1 and will heavily
depend on the completeness axiom. It is worthwhile to think about the fact that con-
tinuous functions on [a, b] ∩Q would not satisfy these theorems.

Connected to what you are learning in the module Numbers, you might want to have a
look at Continuity and Irrational Numbers of Richard Dedekind4.

3Karl Weierstraß (1815–1897), German mathematician.
4Richard Dedekind (1831–1916), German mathematician .

https://archive.org/details/essaysintheoryof00dedeuoft
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4.7.1 Two important properties of continuous functions

To motivate the proof of our first result, we shall first prove first the following result on
sequences with strictly positive limits.

Lemma 4.1.

Let (an) ⊆ R, a ∈ R, a > 0. Suppose that (an) → a. Then there exists
n0 ∈ N such that an > 0 for all n ≥ n0.

Proof.

Figure 4.8: Continuous function which is positive at a point x0.



CHAPTER 4. CONTINUITY 110

Now, let us state this quite intuitive insight about continuous functions as a theo-
rem.

Theorem 4.5 (Preservation of sign).
Let I ⊆ R f : I → R be continuous at x0 ∈ I . If f(x0) > 0, then there
exists a δ > 0 such that

f(x) > 0 for all x ∈ [x0 − δ, x0 + δ] ∩ I.

Proof.
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Now, we also introduce the notion of a bounded function. This is essentially a recap of
results of Chapter 1 of Analysis I (Bounded sets).

Definition 4.10 (Bounded from above).
Let I ⊆ R. Then, a function f : I → R is called bounded from above if and
only if there exists a constant C ∈ R such that for all f(x) ≤ C for all x ∈ I .

Definition 4.11 (Bounded from below).
Let I ⊆ R. Then, a function f : I → R is called bounded from below if and
only if −f is bounded from above.

Definition 4.12 (Bounded).
Let I ⊆ R. Then, a function f : I → R is called bounded if and only if f is
bounded from above and bounded from below.

Remark 4.7. Let us set f(I) := {f(x) : x ∈ I}. Then, the boundedness of f is
equivalent to the boundedness of the set f(I), i.e.

sup(f(I)) < +∞ and inf(f(I)) > −∞.

If only one of the two holds, we have the function bounded above or below respectively.
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Now we prove that continuous functions f : [a, b] → R are locally bounded.

Theorem 4.6 (Local boundedness).
Let I ⊆ R and f : I → R be continuous at x0 ∈ I . Then, there exist a
constant C > 0 and a δ > 0 such that

|f(x)| ≤ C for all x ∈ [x0 − δ, x0 + δ] ∩ I.

Proof.
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4.7.2 The Intermediate Value Theorem (IVT)

Theorem 4.7 (Intermediate value theorem (IVT)).
Let f : [a, b] → R be continuous and suppose that f(a) < 0 and f(b) > 0.
Then, there exists an x0 ∈ [a, b] such that f(x0) = 0.

Figure 4.9: Illustration of Theorem 4.7.

Exercise 4.9. Think about whether the converse of Theorem 4.7 is true. Then study
whether the continuity is really needed in general. See also the Review/Problem Sheet
of this week and have a look in the book Counterexamples in Analysis from the Reading
List.
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Remark 4.8. As we will see in the proof, the fact that [a, b] is a closed interval of
real numbers is important as well since the real numbers are complete5. If we look at
continuous functions on Q, i.e. f : [a, b] ∩Q → R, which are continuous, then the
IVT is false.
For example, the function f(x) = x2 − 2 on [1, 2] ∩ Q does not have a zero in
[1, 2] ∩Q, i.e. there is no x ∈ [1, 2] ∩Q such that f(x) = 0 since

√
2 is irrational.

Proof of Theorem 4.7.

5Remember that means that all bounded above, non-empty sub-sets of R have a supremum.
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From the IVT, we get immediately

Corollary 4.1 (Reformulated IVT).
Suppose f : [a, b] → R is continuous and y0 ∈ R is between f(a) and f(b).
Then there exists an x0 ∈ [a, b] such that f(x0) = y0.



CHAPTER 4. CONTINUITY 116

4.7.3 Applications of the IVT

Example 4.14. Prove that f : R → R with f(x) = x5 − x4 + x3 − x2 + x+ 1
has a zero between −1 and 0.

Example 4.15. We show that f : R → R with

f(x) = x3 + 2
1 + x2

is surjective.6

6That means that for all y in the co-domain R there exists an x in the domain R such that
f(x) = y.
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To state another important conclusion, we need the notion of a fixed point.

Definition 4.13 (Fixed point).
Let I ⊆ R be an interval and f : I → R be a function. Then, x0 ∈ I is called
a fixed point of f if and only if f(x0) = x0.

Theorem 4.8 (Brouwer’s Fixed Point Theorema).
Let f : [a, b] → [a, b] be continuous. Then there exists a x0 ∈ [a, b] such that

f(x0) = x0.
aNamed after the Dutch mathematician Luitzen Egbertus Jan Brouwer (1881–1966).

Figure 4.10: Illustration of the Brouwer’s Fixed Point Theorem.
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Proof of Theorem 4.8.

Decide which of the following statements is true.

• All continuous functions f : [−1, 1] → [−1, 1] have a fixed point.

• All continuous functions f : [−2, 3] → [0, 3] have a fixed point.

• All continuous functions f : [0, 1] → [0, 3] have a fixed point.
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4.7.4 Weierstrass’ Extremal Value Theorem

We introduce the notions of local and global maximum.

Definition 4.14 (Local maximum).
Let I ⊆ R and f : I → R be a function. Then, x0 ∈ I is called a local

maximum of f if there exists a δ > 0 such that

∀x ∈ (x0 − δ, x0 + δ) ∩ I : f(x) ≤ f(x0).

Exercise 4.10. Why is the ∩I necessary in the above definition. When could we leave
it away?

Definition 4.15 (Global maximum).
Let I ⊆ R and f : I → R be a function. Then, x0 ∈ I is called a global

maximum if
∀x ∈ I : f(x) ≤ f(x0).

Exercise 4.11. Write down the according definition for a local minimum, Definition
4.16 and a global minimum, Definition 4.17, for a function f : I → R, where I ⊆ R.

Definition 4.16 (Local minimum).



CHAPTER 4. CONTINUITY 120

Definition 4.17 (Global minimum).

Exercise 4.12. Draw pictures and illustrate the above defined notions of local and global
maximum/minimum. Convince yourself that neither local nor global maxima/minima
must be unique.

Figure 4.11: Illustration of local/global maxima/minima.
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The next important theorem is Weierstrass’ Extremal Value Theorem.

Theorem 4.9 ((Weierstrass’) Extreme Value Theorem (EVT)).
Suppose that f : [a, b] → R is continuous. Then,

(i) f is bounded.

(ii) f attains its maximal/minimal values, i.e. there exist x1, x2 ∈ [a, b]
such that

f(x1) = sup
x∈[a,b]

f(x), f(x2) = inf
x∈[a,b]

f(x).

Exercise 4.13. As for the IVT, think about whether the converse of the EVT is true.
Further, explore the necessity of the continuity. See also the Review/Problem Sheet of
this week and have a look in the book Counterexamples in Analysis from the Reading
List.

Proof of Theorem 4.9.

First, we prove (i).
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Now, we attend to part (ii). Since, by part (i), f is bounded on [a, b] there
exists, by completeness ofR a y0 = sup{f(x) : x ∈ [a, b]} =: X . We
have to show that there exists a x0 ∈ [a, b] such that f(x0) = y0. We
assume that such an x0 does not exist. Then, the function

g(x) := 1
y0 − f(x)

is everywhere defined and continuous. Thus, g is bounded, i.e. there exists
an M > 0 such that

∀x ∈ [a, b] : |g(x)| ≤ M.

This means, by the definition of g that

1
y0−f(x) ≤ M ⇔

y0 − f(x) ≥ 1
M ⇔

f(x) ≤ y0 − 1
M

which contradicts that y0 = sup(X). For the minimum, we argue similarly.
This concludes the proof.
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Remark 4.9. The closedness of the interval in the statement of the EVT is essential.
For instance, consider f : (0, 1) → R with f(x) = 1

x . The function is continuous
but not bounded on (0, 1).

Remark 4.10. The continuity of the function f in the statement of the EVT is essential.
For instance, consider f : [0, 1] → R with

f(x) =


(−1)nn

n+1 : x = m
n ∈ Q

0 : x ∈ R \Q
,

where m
n in the definition of the function is regarded to be in lowest terms. In every

neighbourhood of every point in [0, 1], the values of f come arbitrarily close to the
numbers −1 and 1 but always stay strictly between them.

Remark 4.11. Consider f : [0, 1] → R given by

f(x) =

 n : x = m
n ∈ [0, 1] ∩ Q

0 : x ∈ [0, 1] \ Q
,

where m
n is in lowest terms. This function is finite in every point but not bounded on

[0, 1] and thus shows again that continuity can not be dropped from Theorem 4.9. To
see that assume that there is a x0 ∈ [0, 1] such that f is bounded on [x0 −δ, x0 +δ].
(If x = a or x = b we consider the appropriate "half"-interval.) Then, the denominators
of x ∈ [x0 − δ, x0 + δ] ∩Q must be bounded as well as the numerators. However,
this means there are only finitely many rational elements in [x0 − δ, x0 + δ] which is
not true. Thus, f is not bounded on any Interval I ⊆ [0, 1].
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4.8 Continuity of linear maps

Reading 5. This section is this week’s reading. Please take a stack of paper and a
pen and go through all calculations by hand. They are not very difficult but are best
understood if performed by you and not just read through.

We convince ourselves that a linear map L : Rd → Rm is continuous. For the
definition of Linear Map see Definition A.15. Since Lx − Lx0 = L(x − x0), it is
sufficient to prove that L is continuous at x0 = 0. If the matrix L is the 0 matrix,
then the continuity is obvious.
Let us denote

L =


l11 . . . l1d
... ...
lm1 . . . lmn

 .
With that, we obtain

Lh =


l11 . . . l1d
... ...
lm1 . . . lmd




h1
...
hd

 =



d∑
j=1

l1jhj

...
d∑

j=1
lmjhj


.

We want to show that for all ε > 0 there exists a δ > 0 such that

h ∈ Rd, ‖h‖2 < δ ⇒ ‖Lh‖2 < ε. (4.8.1)

We have

‖Lh‖2 =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



d∑
j=1

l1jhj

...
d∑

j=1
lmjhj



∥∥∥∥∥∥∥∥∥∥∥∥∥∥2

≤

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



d∑
j=1

l1jhj

...
d∑

j=1
lmjhj



∥∥∥∥∥∥∥∥∥∥∥∥∥∥1

≤
m∑

i=1

∣∣∣∣∣∣
d∑

j=1
lijhj

∣∣∣∣∣∣ .

We further obtain for i = 1, . . . ,m∣∣∣∣∣∣
d∑

j=1
lijhj

∣∣∣∣∣∣ ≤
d∑

j=1
|lij||hj|

Now, we get for all i = 1, . . . ,m that

|lij| ≤ max
i=1,...,m
j=1,...,d

|lij| =: L.
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Note that the right hand side of the last inequality does not depend on i any-more and
we get ∣∣∣∣∣∣

d∑
j=1

lijhj

∣∣∣∣∣∣ ≤ L
d∑

j=1
|hj|.

Hence, we obtain

m∑
i=1

∣∣∣∣∣∣
d∑

j=1
lijhj

∣∣∣∣∣∣ ≤
m∑

i=1

L
d∑

j=1
|hj|

 ≤ mL
d∑

j=1
|hj| ≤ m

√
dL‖h‖2.

Let us set CL = m
√
dL. Finally, we get

‖Lh‖2 ≤ CL‖h‖2

and then (4.8.1) by choosing δ = ε
CL

. The constant CL is not zero as the matrix is
not the zero matrix. The argument is complete.
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5
Differentiability and derivative on R1

5.1 Historical comments on Differential Calculus

The history of differential (and integral) calculus is quite long and convoluted. Everyone
knows that Leibniz (1646–1716) and Newton (1643–1727) are the main inventors of
calculus in the 17. century. However, elements of it can be traced back as far as
Archimedes (ca. 287–212 BC) and Brahmagupta (ca. 598–665).

Table 5.1: Gottfried Wilhelm Leibniz and Isaac Newton

The ideas of calculus did not come out of the blue, contributions were made by Descartes
(1596–1650), Fermat (1607–1665), Pascal (1623–1662) and others. The foundations of
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https://en.wikipedia.org/wiki/History_of_calculus
https://en.wikipedia.org/wiki/Gottfried_Wilhelm_Leibniz
https://en.wikipedia.org/wiki/Isaac_Newton
https://en.wikipedia.org/wiki/Archimedes
https://en.wikipedia.org/wiki/Brahmagupta
https://en.wikipedia.org/wiki/Ren%C3%A9_Descartes
https://en.wikipedia.org/wiki/Blaise_Pascal
https://en.wikipedia.org/wiki/Pierre_de_Fermat
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calculus, the infinitesimals, where mysterious at the time and had many critics. Success in
answering otherwise much harder to answer questions gave the mathematicians following
Leibniz and Newton, foremost the Bernoullis (Jacob 1654–1705, Johann 1667–1748),
Euler (1707–1783) and Gauss (1777–1855), the confidence in the methods even with the
shaky grounds; there was also some success to make the methods more rigorous step by
step. A complete solid foundation was not laid until the work of Cauchy (1789–1857) and
Weierstraß (1815–1897) who defined limits arithmetically and by that laid the discussions
about the ghosts of departed quantities at rest. Their approach is what we will develop
in this chapter.

Table 5.2: Augustin-Louis Cauchy and Karl Weierstraß

See also [14, 3, 6] and the references therein.

An interesting lecture, Titled Ghosts of Departed Quantities: Calculus and its Limits
from Prof. Raymond Flood from Gresham College at the topic can be found here.

A modern treatment following the ideas closer to Leibniz original intuition than the
modern one build on limits is the so-called Non-standard Analysis.

https://en.wikipedia.org/wiki/Bernoulli_family
https://en.wikipedia.org/wiki/Leonhard_Euler
https://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
https://en.wikipedia.org/wiki/Augustin-Louis_Cauchy
https://en.wikipedia.org/wiki/Karl_Weierstrass
https://plus.maths.org/content/news-world-maths-attacks-foundations-calculus
https://www.gresham.ac.uk/lectures-and-events/ghosts-of-departed-quantities-calculus-and-its-limits
https://en.wikipedia.org/wiki/Non-standard_analysis
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5.2 Some thinking

Figure 5.1: Differentiability and derivative.
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5.3 Definition

Definition 5.1 (Differentiability at a point).
Let f : (a, b) → R be a function. Then, f is said to be differentiable at x0

∈ (a, b) if and only if

lim
h→0

f(x0 + h) − f(x0)
h

(5.3.1)

exists. If the limit exists, we denote it by f ′(x0), i.e

f ′(x0) = lim
h→0

f(x0 + h) − f(x0)
h

. (5.3.2)

Graphically, as discussed in the last section, this definition says that the derivative of
f at x0 is the slope of the tangent line to the graph y = f(x) at x0, which is
the limit as h → 0 of the slopes of the lines through the points (x0, f(x0)) and
(x0+h, f(x0+h)), which are called secants. Thinking about the derivative graphically,
one always should keep in mind, that h → 0 does not only mean h → 0+ or h → 0−
but that they both must exist and agree. See the next remark.

Remark 5.1. Differentiability for f : (a, b) → R can be defined using the one sided
limits from Section 3.6. The function f is then called differentiable at x0 if the two
one-sided limits

lim
h→0−

f(x0 + h) − f(x0)
h

, lim
h→0+

f(x0 + h) − f(x0)
h

exist and are the same. If they exist but are not the same, then the function is not
differentiable at x0 but has a right-derivative

lim
h→0+

f(x0 + h) − f(x0)
h

and a left-derivative at x0

lim
h→0−

f(x0 + h) − f(x0)
h

at x0. One can also have the case that only one of the two exists.

https://en.wikipedia.org/wiki/Secant_line
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Remark 5.2. Let us discuss a couple of ways to write the statement of the differentia-
bility of f in different ways:

1. The differential quotient (5.3.1) can be written as

f ′(x0) = lim
x→x0

f(x) − f(x0)
x− x0

. (5.3.3)

2. Definition 5.1 can be restated as: f : (a, b) → R is differentiable at x0 ∈ (a, b)
if and only if there exists a function ϕ : (a − x0, b − x0) → R such that
limh→0

ϕ(h)
h = 0 and a number A such that

f(x0 + h) = f(x0) + Ah+ ϕ(h).

The number A is given by f ′(x0) by (5.3.2). This means that f is, close to x0,
well approximated by a linear function with a very small; by very small we mean
that it gets to 0 faster then the distance h from x0 + h to x0.

3. The last statement is often rephrased as

f(x+ h) = f(x) + Ah+ o(h)

or, in the spirit of (5.3.3), as

f(x) = f(x0) + A(x− x0) + o(x− x0).

We say that φ is little-o of h. Intuitively, that means that one can approximate
f(x) by f(x0) + f ′(x0)(x − x0) if x is close enough to x0, i.e. in a (small)
neighbourhood of x0, one can replace f by its tangent

T (x) = f(x0) + f ′(x0)(x− x0).

https://en.wikipedia.org/wiki/Big_O_notation#Little-o_notation
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Exercise 5.1. Prove the claimed equivalence of Definition 5.1 with the second statement
in Remark 5.2.
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Remark 5.3. Using the definition of a limit from Chapter 3, we can rewrite the definition
of a derivative as follows: We say that f : (a, b) → R is differentiable at x0 ∈ (a, b)
iff

∃A ∈ R s.t. ∀ε > 0 ∃δ > 0

0 < |h| < δ ⇒
∣∣∣∣∣f(x0 + h) − f(x0)

h
− A

∣∣∣∣∣ < ε.

We finish the section on the definition of derivatives by stating

Definition 5.2 (Differentiability & Derivative).
Let f : (a, b) → R be a function. Then, f is said to be differentiable on (a, b)
if and only if f is differentiable at x0 for all x0 ∈ (a, b).
The derivative f ′ : (a, b) → R is given by the map

x 7→ f ′(x)

where f ′(x) is defined in (5.3.2).

Remark 5.4. In the sequel, by saying that f : [a, b] → R is differentiable on [a, b],
we mean that f is differentiable on (a, b) according to Definition 5.2 and that

lim
h→0+

f(a+ h) − f(a)
h

and lim
h→0−

f(b+ h) − f(b)
h

exist.

Remark 5.5. Sometimes we might just say that a function f : I → R be differentiable
by which we mean that is is supposed to be differentiable on its domain I taking into
account one-sided limits at boundary points.
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5.3.1 Examples of derivatives

Exercise 5.2. Let I ⊆ R be an interval and let us compute the derivative of f : I →
R, f(x) = c, where c ∈ R is a fixed constant.

• What do we have to investigate?

• Let us work it out then.

Remark 5.6. The converse of Example 5.2 is also true. For that see Lemma 5.1.
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Example 5.1. Let us compute the derivative of f : R → R, f(x) = x with the
differential quotient. We have

Example 5.2. Let us compute the derivative of f : R → R, f(x) = x2 with the
differential quotient. We have
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Example 5.3. Let us compute the derivative of f : R → R, f(x) =
√
x with the

differential quotient. We have
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Example 5.4. We consider f : R → R with f(x) = |x|. The function f is not
differentiable at x = 0 but only on (−∞, 0) and (0,∞). On The first interval we
have f(x) = −x and on the second f(x) = x. At x = 0, we have

lim
h→0+

f(0 + h) − f(0)
h

= lim
h→0+

h

h
= 1, and

lim
h→0−

f(0 + h) − f(0)
h

= lim
h→0−

−h
h

= −1.

See also Example 3.8.

Example 5.5. There exist also function which are differentiable at one point but are
not continuous anywhere else. Let

χ
Q(x) =

 1 : x ∈ Q
0 : x ∈ R \Q

.

Then, the function
f(x) = x2χ

Q(x)

is differentiable at x = 0 but for no x 6= 0 continuous. The continuity part is clear
from Example 4.9. Let us investigate the existence of

lim
h→0

f(0 + h) − f(0)
h

. (5.3.4)

We have that |f(h)| ≤ |h2| = |h|2 and thus,

0 < |h| < ε ⇒
∣∣∣∣∣f(h)
h

∣∣∣∣∣ < ε

which implies that (5.3.4) exists and is equal to 0.
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Remark 5.7. As we have seen, e.g. with Example 5.4, there are more continuous than
differentiable functions. However, the examples so far are differentiable at most points
and only problematic at very few. Until quite late, it was widely believed that almost
all functions possess even infinitely many derivatives. It was first Bolzano [2] and then
Weierstrass [17] who showed that there are Monster functions which are everywhere
continuous but at no point differentiable. An example is

f(x) =
+∞∑
n=1

1
2n

cos(10nπx).

We have not yet all the tools to understand why the assertion is true but can still admire
that such a function exists and that one can write down an example as explicit as this.

Figure 5.2: A glimpse into the Weierstrass Monster Function.

For further information on this function and related ones see also [8], [1], and [9].
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5.3.2 Differentiability ⇒ Continuity

Theorem 5.1 (Differentiable functions are continuous).
Suppose f : (a, b) → R is differentiable at x0 ∈ (a, b). Then f is continuous
at x0.

Remark 5.8. The converse of theorem 5.1 is not true as we have already noted in
Remark 5.7. Another simple function which is continuous on R but not differentiable
at x = 0 is f(x) = |x|.

Proof.
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Remark 5.9. The result of Theorem 5.1 holds true for f : [a, b] → R is one uses
the appropriate one-sided limits in the definition of continuity and differentiability at the
boundary points.

5.3.3 Are derivatives continuous?

Reading 6. This section constitutes this week’s reading. Read the section carefully and
work out all the details, i.e. redo calculations, build your own examples, etc. pp. If you
have questions, ask your tutors, talk to the staff in the MLSC or come to me.

Let f : (a, b) → R be a differentiable function. Then, the derivative x 7→ f ′(x) is
not necessarily continuous. A standard example is

f(x) =

 x2 sin
( 1

x

)
: x ∈ [−1, 1] \ {0}

0 : x = 0
. (5.3.5)

This function is continuous on [−1, 1] and differentiable on [−1, 1] but the derivative

f ′(x) =

 2x
(
sin

( 1
x

))
− cos

( 1
x

)
: x ∈ [−1, 1] \ {0}

0 : x = 0
.

is not continuous at x = 0 as the limit

lim
x→0

cos
(1
x

)
does not exist.

Exercise 5.3. Prove that the function (5.3.5) is differentiable at x = 0.
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Figure 5.3: The function cos( 1
x). As x approaches zero, the functions tries to take all

values between −1 and 1 and can therefore not have a limit.

Below, we plot f . The reader should use GeoGebra or an equivalent tool to get better
pictures as we are here limited to the inanimate nature of paper.

https://www.geogebra.org
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Figure 5.4: A plot of f(x) = x2 sin
( 1

x

)
.
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Figure 5.5: A more detailed plot of f(x) = x2 sin
( 1

x

)
around x = 0 with the

envelope ±x2.
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5.4 Operations with differentiable functions

As we have done in Section 4.6 for continuous functions, we investigate now what oper-
ations we are allowed to do with differential functions and how the resulting derivatives
are computed.

Theorem 5.2 (Arithmetic operations with differentiable functions).
Let f , g : [a, b] → R differentiable at x0 ∈ [a, b]. Then

1) (λ · f)′(x0) = λ · f ′(x0), for all λ ∈ R,

2) (f + g)′(x0) = f ′(x0) + g′(x0),

3) (f · g)′(x0) = f ′(x0)g(x0) + f(x0)g′(x0),

4)
(
f

g

)′
(x0) = f ′(x0)g(x0) − f(x0)g′(x0)

g2(x0)
, provided g(x0) 6= 0.

Proof.
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Exercise 5.4. Use Theorem 5.2 to prove that polynomials of any degree are differentiable
on R. Remember, a polynomial of degree n ∈ N0 is given by

p(x) =
n∑

k=0
akx

k,

where the ak, k = 0, . . . , n are real numbers. (Hint: Start with p(x) = a0 and
p(x) = a1x and work your way up from there. Induction is your friend.)

Theorem 5.3 (Chain rule).
Let g : [a, b] → R and let f : I → R, where I ⊆ R is an interval containing the
range of g, so that f ◦ g is defined. Suppose that g is differentiable at x0 ∈ [a, b]
and f is differentiable at g(x0). Then, h = f ◦ g is differentiable at x0 and

h′(x0) = f ′(g(x0))g′(x0).

Remark 5.10. In the composition f ◦ g(x) = f(g(x)) we refer to f as the outer
function, and g as the inner function. We can describe the basic mechanism of the chain
rule as follows: differentiate the outer function holding the inner function as a constant.
Then, multiply the result by the derivative of the inner function. If there is a composition
of more than two functions, e.g. f(g(h(x))), the above process is simply repeated as
many times as necessary. We leave it as an exercise to write down a precise statement
for that case.
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Remark 5.11. A ‘proof’ that can often be found in text books works as follows:

lim
h→0

f(g(x0 + h)) − f(g(x0))
h

= lim
h→0

f(g(x0 + h)) − f(g(x0))
h

g(x0 + h) − g(x0)
g(x0 + h) − g(x0)

= lim
h→0

f(g(x0 + h)) − f(g(x0))
g(x0 + h) − g(x0)

g(x0 + h) − g(x0)
h

= lim
h→0

f(g(x0 + h)) − f(g(x0))
g(x0 + h) − g(x0) lim

h→0

g(x0 + h) − g(x0)
h

=
(

lim
h→0

f(g(x0 + h)) − f(g(x0))
g(x0 + h) − g(x0)

)
g′(x0)

=
(

lim
h→0

f(g(x0) + g(x0 + h) − g(x0)) − f(g(x0))
g(x0 + h) − g(x0)

)
g′(x0)

=
(

lim
t→0

f(g(x0) + t) − f(g(x0))
t

)
g′(x0)

= f ′(g(x0))g′(x0),

where we set t = g(x0 + h) − g(x0). There are several sins in this proof. Can you
spot them?
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First, the proof does not apply to constant functions g since you then commit the
deadly sin of dividing by zero. Also, the function g(x0 + h) − g(x0) might be 0 for a
sequence of h due to oscillations of g. Furthermore, the limits t → 0 and h → 0 are
not equivalent as h → 0 implies t → 0 but, again due to possible oscillations, t → 0
does not imply h → 0. Also, the step of computing the product of limits (3rd equal
sign) is only justified if we can ensure the existence of both (see Theorem 3.2) and the
existence of

lim
h→0

f(g(x0 + h)) − f(g(x0))
g(x0 + h) − g(x0)

is unclear due to the limits t → 0 and h → 0 not being equivalent.

As a final remark let me make clear that the proof works if one excludes the following
situation: g has the following property:

∃ε0 > 0 ∀ε ∈ (0, ε0]

∃x ∈ (x0 − ε, x0 + ε) \ {x0} s.t. g(x) = g(x0).

A way to fix the problem is given in the proof below.
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Proof. Orthodox proofs of the chain rule are somewhat technical and often opaque to
students. However, the proof presented in the slides can be extended into a mathemati-
cally rigorous argument. We follow Peter F. McLoughlin who presented this proof in the
American Mathematical Monthly as a page filler. See January Issue of 2013 p. 94 or here.

First, when g(x) − g(x0) 6= 0, we can write

f(g(x)) − f(g(x0))
x− x0

= f(g(x)) − f(g(x0))
g(x) − g(x0)

g(x) − g(x0)
x− x0

. (5.4.1)

Case I: We assume that for every ε > 0 there exists an x ∈ (x0 −ε, x0 +ε)\{x0}
such that g(x) = g(x0). Picking such a sequence, we get

lim
n→+∞

g(xn) − g(x0)
xn − x0

= 0.

Since g is differentiable, i.e.

lim
x→x0

g(x) − g(x0)
x− x0

exists and the uniqueness of limits, we get

lim
x→x0

g(x) − g(x0)
x− x0

= 0. (5.4.2)

Let now (xn)n∈N ⊆ (a, b) be a sequence with (xn) → x0 as n → +∞. We can
partition (xn)n∈N into two sub-sequences (xnl

)l∈N ⊆ (xn)n∈N and (xnk
)k∈N ⊆

(xn)n∈N such that g(xnl
) = g(x0) and g(xnk

) 6= g(x0).1 Thus, we get

lim
l→+∞

f(g(xnl
)) − f(g(x0))
xnl

− x0
= 0.

For (xnk
)k∈N, we can use (5.4.1) to get

lim
k→+∞

f(g(xnk
)) − f(g(x0))
xnk

− x0

= lim
k→+∞

f(g(xnk
)) − f(g(x0))

g(xnk
) − g(x0)

g(xnk
) − g(x0)

xnk
− x0

= lim
k→+∞

f(g(xnk
)) − f(g(x0))

g(xnk
) − g(x0)

· lim
k→+∞

g(xnk
) − g(x0)

xnk
− x0

= 0

1One of them could be empty, the argument proceeds nevertheless. Do you see that?

https://www.jstor.org/stable/pdf/10.4169/amer.math.monthly.120.01.084.pdf
http://www.math.csusb.edu/faculty/pmclough/CR.pdf


CHAPTER 5. DIFFERENTIABILITY AND DERIVATIVE ON R1 149

by (5.4.2). Thus, we have

lim
n→+∞

f(g(xn)) − f(g(x0))
xn − x0

= 0.

This gives the result in case I.

Case II Let us assume that there is an ε > 0 such that g(x) 6= g(x0) for all
x ∈ (x0 − ε, x0 + ε). Then the result follows by taking limits x → x0 on both sides
of (5.4.1) and basic limit calculus.

Example 5.6. Let us compute a couple of examples with the chain rule:

1. h(x) = sin(x2), h′(x) = cos(x2) · 2x, where we used f(x) = sin(x),
g(x) = x2

2. h(x) = (1 + x)−1
2 , h′(x) = −1

2(1 + x)−3
2 · 1, where we used f(x) = 1√

x
,

g(x) = 1 + x

3. h(x) = esin(x2), h′(x) = esin(x2) · (2x cos(x2)), where we used f(x) = ex,
g(x) = sin(x2).
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5.5 Properties of differentiable functions

We introduce the notion of a stationary point by

Definition 5.3 (Stationary point).
Let f : [a, b] → R and x0 ∈ (a, b). If f is differentiable at x0 and f ′(x0) = 0,
then we call x0 a stationary point of f .

We prove now

Theorem 5.4 (Fermat’s Theorem).
Let f : [a, b] → R and suppose f is differentiable at x0 ∈ (a, b). Suppose that
f has a local maximum at x0. Then f ′(x0) = 0, i.e. x0 is stationary point of f .

Proof.
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From Fermat’s theorem, we get immediately

Corollary 5.1 (Classification of extrema).
Let f : [a, b] → R. Then the (local/global) maxima and minima of f can only
be at points x0 of one of three types:

(i) stationary point of f ,

(ii) a point in (a, b) at which f is not differentiable,

(iii) at the boundary of [a, b], i.e. at x = a or x = b.

Example 5.7. Consider f(x) = x2 and g(x) = |x| on [−1, 1]. Then, we have that
the global minimum of f is a stationary point, x0 = 0 and the global maxima are on
the boundary at x1 = −1 and x2 = 1. For g, we have that the global minimum is at
a point where the function is not differentiable, namely x0 = 0. The global maximuma
are at x1 = −1 and x2 = 1.

The next theorem is quite intuitive and has many applications in Analysis.

Theorem 5.5 (Rolle’s Theorem).
Let f : [a, b] → R be continuous and differentiable on (a, b) and f(a) = f(b).
Then there exists an x0 ∈ (a, b) such that f ′(x0) = 0.
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Figure 5.6: Illustration of Rolle’s Theorem.

Proof of Rolle’s Theorem:
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Remark 5.12. Note that for Rolle’s theorem, we require continuity on the closed interval
[a, b] but differentiability only on the open interval (a, b). The proof is deceptively
simple, but the result is nevertheless non-trivial since it relies on the Extreme Value
Theorem (see Thm. 4.9), which, in turn, relies on the completeness ofR. The theorem
would not be true if we restricted attention to functions defined on the rationals Q.
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An immediate consequence of Rolle’s Theorem is the so-called Mean Value Theorem

which also has many important applications.

Theorem 5.6 (Mean Value Theorem).
Let f : [a, b] → R be continuous on [a, b] and differentiable on (a, b). Then
there exists x0 ∈ (a, b) such that

f ′(x0) = f(b) − f(a)
b− a

.

Graphically, this result says that there is point x0 ∈ (a, b) at which the slope of the
graph, i.e. the slope of the tangent at y = f(x) at x0, is equal to the slope of the
secant through the endpoints (a, f(a)) and (b, f(b)).

Figure 5.7: Illustration of the Mean Value Theorem.
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Proof of Theorem 5.6.

The next lemma is simple yet of some use to us in the remainder of these notes.

Lemma 5.1.

Suppose f : [a, b] → R and differentiable on [a, b]. Further, let f ′(x) = 0 for
all x ∈ [a, b]. Then there exists c ∈ R such that f(x) = c for all x ∈ [a, b].

Proof. For all x ∈ (a, b], there exists, by Theorem 5.6, a y ∈ [a, x] such that

f(x) − f(a)
x− a

= f ′(y) = 0.

Thus, f(x) = f(a) for all x ∈ [a, b].
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5.6 Derivatives of higher order

If a function f : (a, b) → R has a derivative x 7→ f ′(x) on (a, b) and f ′ is itself
differentiable, then we denote the derivative of f ′ by f ′′ and call it the second derivative
of f . Continuing, we obtain

f, f ′, f ′′, f (3), f (4), . . . , f (k)

each of which is the derivative of the preceding. The function f (k) is called the kth
derivative of f . It is also called the derivative of order n of f . It is also denoted by

dkf

dxk
.

For f (k)(x0) to exist, f (k−1)(x) must exist in a neighbourhood2 (x0 − δ, x0 + δ) of
x0, and f (k−1) must be differentiable at x. Since f (k−1) must exist in neighbourhood
of x0, f (n−2) must be differentiable in that neighbourhood.

5.7 Function spaces

Reading 7. This section constitutes this week’s reading. It is mostly the introduction of
notation but you need to read it carefully nonetheless. If you are confused by anything,
please ask your tutors, see the staff in the MLSC or come by see me.

We consider now the collection of all real functions which are continuous. Thus, functions
are considered as points in an appropriate space which allows us to carry some geometric
intuition over to much more complicated situations than Rd.

Definition 5.4 (The space C(I)).
Let I ⊆ R be an interval. Then, by C(I) = C0(I), we denote the set of all
functions f : I → R which are continuous on I .

2or in a one-sided neighbourhood (x0 − δ, x0], [x0, x0 + δ) if x0 is a boundary point of an interval
on which f is defined.
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Remark 5.13. If I = [a, b], we also write C[a, b] instead of C([a, b]).

Exercise 5.5. Convince yourself that C[a, b] is a real vector space, where + is the
usual pointwise definition

+ : C[a, b] × C[a, b] → C[a, b]

(f, g) 7→ f + g,

where (f + g)(x) := f(x) + g(x) for all x ∈ [a, b], and

· : R× C[a, b] → C[a, b]

(λ, f) 7→ λf,

where (λf)(x) := λ · f(x) for all x ∈ [a, b]. The · in λ · f(x) is the product of R.

Let us generalize Definition 1.8 from Rd to a general real vector space.

Definition 5.5 (Norm).
Let V be a real vector space. Then a function ‖ · ‖ : V → R is called a norm if

(P1) ‖x‖ ≥ 0 for all x ∈ V and ‖x‖ = 0 iff x = 0. (Positivity)

(P2) For all λ ∈ R, and all x ∈ V , ‖λx‖ = |λ|‖x‖. (Homogeneity)

(P3) For all x, y ∈ V , we have

‖x+ y‖ ≤ ‖x‖ + ‖y‖. (Triangle inequality)
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Now, we introduce a norm on C[a, b]: for f ∈ C[a, b], we set

‖f‖∞ := sup
x∈[a,b]

|f(x)|.

Since we have that | · | is a norm on R, we get that ‖ · ‖∞ is a norm on C[a, b] with
the properties

(P1) ‖f‖∞ ≥ 0 and ‖f‖∞ = 0 iff f = 0,

(P2) ‖λf‖∞ = |λ|‖f‖∞, and

(P3) ‖f + g‖∞ ≤ ‖f‖∞ + ‖g‖∞.
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Definition 5.6 (The space Ck[a, b]).
We say f ∈ Ck[a, b] iff the derivatives f (0), f (1), f (2) . . . , f (k) exist and are all
continuous on [a, b].

Exercise 5.6. Convince yourself that all Ck[a, b] are real vector spaces and that, for
k ≥ 1, the derivative d

dx : Ck[0, 1] → Ck−1[a, b] is a linear map from Ck[a, b] to
Ck−1[a, b].
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Also on the space Ck[a, b], k ≥ 1, we can introduce a norm:

‖f‖Ck := ‖f‖∞ + ‖f (1)‖∞ + · · · + ‖f (k)‖∞

=
k∑

i=0
‖f (i)‖∞.

Definition 5.7 (The space C∞[a, b]).
We define the space C∞[a, b] by

C∞[a, b] =
⋂

k∈N0

Ck[a, b].

Remark 5.14. It is clear, that one can not simply extend the norm-definitions from
Ck[a, b] to C∞[a, b] as we need to involve series.

Remark 5.15. The above spaces can easily be defined on open intervals (a, b). How-
ever, then we can not easily introduce a norm as we have no Extreme Value Theo-
rem on open sets which guarantees the boundedness of continuous functions. Clearly,
f ∈ C(0, 1) for f(x) = 1

x but ‖f‖∞ is not finite.
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6
Function sequences

This chapter contains more information than I will examine. For the development of
integrals, we need the notions of pointwise- and uniform convergence of sequences of
functions. This will be discussed in Section 6.1 of this Chapter. The remainder of the
chapter is for your general education and I recommend reading it to get a comprehensible
overview but the contents will not be examined.

6.1 Notions of convergence

Consider fn : R → R with fn(x) = e−nx2 . If x = 0, we have fn(x) = 1. If
x 6= 0, we have fn(x) = e−nx2 =

(
e−x2)n. This implies fn(x) → 0 as n → +∞.

Hence, (fn(x))n∈N0 for every fixed x to

f(x) =

 1 : x = 0
0 : x 6= 0

.

Note that the limit function f is not continuous even though all fn are continuous
functions.

161
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Figure 6.1: Illustration of function sequences.
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Let us make this notion of convergence more precise with

Definition 6.1 (Pointwise convergence).
Let (fn) be a sequence of functions fn : [a, b] → R and f : [a, b] → R. We
say fn → f pointwise as n → +∞ if and only if for all x ∈ [a, b], we have

lim
n→+∞

fn(x) = f(x). (6.1.1)

The line (6.1.1) can be rewritten as

Note the dependence of n0 not only on ε but also on x.

In the above example, one can see this clearly as n0 must be larger and larger as x is
closer and closer to 0. The result is, that the limit function f is not continuous.

Could we get better convergence behaviour if we ask |fn(x) − f(x)| < ε not for one
point but over all x ∈ [a, b], i.e. we define convergence by requiring that there exists
an index n0 such that fn(x) differs from f(x) no more than ε for all x. In formula

n ≥ n0 ⇒ sup
x∈[a,b]

|fn(x) − f(x)| < ε.
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To be more precise, let us introduce

Definition 6.2 (Uniform convergence).
Let (fn) be a sequence of functions fn : [a, b] → R and f : [a, b] → R. We
then say fn → f uniformly as n → +∞ if and only if

∀ε > 0 ∃n0 = n0(ε) ∈ N :

∀n ∈ N, n ≥ n0 ⇒ sup
x∈[a,b]

|f(x) − fn(x)| < ε. (6.1.2)

Using the notation of the norm introduced in 5.7, we can restate (6.1.2) as

∀ε > 0 ∃n0 ∈ N : n ≥ n0 ⇒ ‖fn − f‖ < ε

or
lim

n→+∞
‖fn − f‖∞ = 0.
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Proposition 6.1 (Uniform ⇒ pointwise).
Let (fn) be a sequence of functions fn : [a, b] → R such that there exists a
function f : [a, b] → R with fn → f uniformly. Then fn → f pointwise.

Exercise 6.1. Prove Proposition 6.1.
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We can of course formulate a Cauchy-criterion

Definition 6.3 (Cauchy criterion).
Let (fn) be a sequence of functions fn : [a, b] → R. Then, we say that (fn) is
uniformly Cauchy on [a, b] of for every ε > 0 there exists n0 ∈ N such that

∀m,n ≥ n0 : sup
x∈[a,b]

|fn(x) − fm(x)| < ε.

One can prove the following

Theorem 6.1.

Suppose (fn) is a sequence of functions fn : [a, b] → R. Then, (fn) is uniformly
convergent if and only if it is uniformly Cauchy.

Exercise 6.2. Prove Theorem 6.1. First assume that (fn) is uniformly convergent and
deduce that it is Cauchy. Review the case for real sequences. For the converse prove
first that (fn(x)) ⊆ R is Cauchy in R and then set f(x) = limn→+∞ fn(x) for
all x ∈ [a, b]. Then show the uniform convergence fn → f .
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The central result of this section is

Theorem 6.2.

Suppose (fn) is a sequence of continuous functions fn : [a, b] → R. Assume
that fn → f uniformly for a function f : [a, b] → R. Then, f is continuous.

Proof. We assume that there exists a function f such that (fn) is uniformly convergent
to f . We show that f is continuous, i.e. that for all x0 ∈ [a, b] and all ε > 0 there
exists a δ > 0 such that

x ∈ [a, b], |x− x0| < δ ⇒ |f(x) − f(x0)| < ε.

We compute

|f(x) − f(x0)| = |f(x) − fn(x) + fn(x) − f(x0)|

≤ |f(x) − fn(x)| + |fn(x) − f(x0)|

≤ sup
x∈[a,b]

|f(x) − fn(x)| + |fn(x) − f(x0)|.

Since fn → f uniformly, there exists n1 ∈ N such that

∀n ≥ n1 : sup
x∈[a,b]

|f(x) − fn(x)| < ε

3 .

Thus, we have for all n ≥ n1 that

|f(x) − f(x0)| <
ε

3 + |fn(x) − f(x0)|

= ε

3 + |fn(x) − fn(x0) + fn(x0) − f(x0)|

≤ ε

3 + |fn(x) − fn(x0)| + |fn(x0) − f(x0)|.

By Proposition 6.1, there exists n2 ∈ N such that

∀n ≥ n2 : |fn(x0) − f(x0)| <
ε

3
for all n ≥ n2. Further, the fn are continuous on [a, b], hence, there exists for all
n ≥ n0 = max{n1, n2} a δ = δ(n, ε) > 0 such that |fn(x) − fn(x0)| < ε

3 .
Thus,

|f(x) − f(x0)| <
ε

3 + ε

3 + ε

3 = ε

whenever |x− x0| < δ. This concludes the proof.
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6.2 Examples & counterexamples

Example 6.1 (Do pointwise limits preserve boundedness?).
Consider (fn)n∈N with fn : (0, 1) → R given by

fn(x) = n

nx+ 1 .

We have
lim

n→+∞
fn(x) = lim

n→+∞
1

x+ 1
n

= 1
x
.

Thus, fn → f pointwise as n → +∞. We have |fn(x)| < n for x ∈ (0, 1), i.e.
fn is bounded on (0, 1) for any n but the pointwise limit is not.

Example 6.2. One can make the last example stronger. A pointwise convergent se-
quence need not to be bounded even if it converges pointwise to 0. Consider (fn) with
fn : [0, 1] → R defined by

fn(x) =


2n2x : 0 ≤ x ≤ 1

2n

2n2
( 1

n − x
)

: 1
2n < x < 1

n

0 : 1
n ≤ x ≤ 1

.

If x ∈ (0, 1], we get fn(x) = 0 for all n ≥ 1
x , i.e. fn(x) → 0 as n → +∞. If

x = 0, we have fn(x) = 0 for all n ≥ 1. Thus, fn → 0 pointwise on [0, 1] as
n → +∞. We have maxx∈[0,1] fn(x) = n → +∞ as n → +∞.

Exercise 6.3. Consider (fn) with fn : R → R defined by

fn(x) = sin(nx)
n

.

The sequence (fn) converges pointwise to f ≡ 0 as well as uniformly. For all ε > 0,
we have ‖fn‖∞ < ε for n ≥

⌊1
ε

⌋
+ 1, where

⌊1
ε

⌋
means the largest integer smaller or

equal to 1
ε .
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6.3 (Real) Power series

For this section, you may also review your Analysis I notes. You will learn much more
about power series in the complex setting in the module Complex Variables.

Theorem 6.3 ((Real) Power series).
Let (an) ⊆ R be a sequence of numbers and suppose that

+∞∑
k=0

|an|Rn < +∞. (6.3.1)

Then, the sequence (fN)N∈N0 of partial sums

fN(x) =
N∑

k=0
anx

n

of functions converges uniformly on [−R,R].

Proof. We show that for every ε > 0 there exists an index n0 ∈ N such that

∀n ≥ n0 ⇒ ‖fn − f‖∞ < ε.

Since |xn| ≤ Rn for x ∈ [−R,R], we have that
+∞∑
k=0

anx
n

converges for every x ∈ [−R,R] by (6.3.1). We have

sup
x∈[−R,R]

|fn(x) − f(x)| = sup
x∈[−R,R]

∣∣∣∣∣∣
+∞∑

k=n+1
akx

k

∣∣∣∣∣∣
≤

+∞∑
k=n+1

|ak|‖xk‖∞

=
+∞∑

k=n+1
|ak|Rk.

Since (6.3.1), we have that

lim
n→+∞

+∞∑
k=n

|ak|Rk = 0.

Thus, we have that there exists n0 such that
+∞∑
k=n

|ak|Rk < ε ∀n ≥ n0.
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Hence, we obtain
sup

x∈[−R,R]
|fn(x) − f(x)| < ε

for n ≥ n0. This concludes the proof.

Example 6.3. The series
+∞∑
k=0

xk

k! (6.3.2)

converges uniformly. We define the exponential function ex = exp(x) by

ex :=
+∞∑
k=0

xk

k! (6.3.3)

.

Exercise 6.4. Check that (6.3.2) converges uniformly. Use the Definition (6.3.3) to
prove ex+y = exey. To see that the product is well-defined, you should look up the
definition of Cauchy product.

Example 6.4. We define (see Taylor’s Theorem and the Mathematical Methods II
module) the following functions

sin(x) :=
+∞∑
k=0

(−1)k

(2k + 1)!x
2k+1, (6.3.4)

cos(x) :=
+∞∑
k=0

(−1)k

(2k)! x
2k. (6.3.5)

Exercise 6.5. Check that the series in the definitions (6.3.4) and (6.3.5) converge
uniformly and deduce

d

dx
sin(x) = cos(x), d

dx
cos(x) = − sin(x).

https://en.wikipedia.org/wiki/Cauchy_product
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You may for the moment ignore the issue of when one is allowed to exchange the
differentiation and summation.1

1One can do that exactly when the series is uniformly convergent.



Chapter

7
Integration on R1

7.1 Step functions and their integrals

First, we remind ourselves about a definition from set theory and introduce the notion
of an indicator function.

Definition 7.1 (Indicator function).
Let A ⊆ Rd. Then, the function

χA(x) =

 1 : x ∈ A

0 : x /∈ A
.

is called indicator function of A.

Remark 7.1. The letter χ is a the Greek letter chi.

173

https://en.wikipedia.org/wiki/Chi_(letter)
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The following properties of characteristic functions are useful.

Proposition 7.1 (Properties of characteristic functions).
Let U be a set and A, B ⊆ U .

(i) If A ⊆ B then χB(x) ≥ χA(x).

(ii) The characteristic function of Ac is given by

χAc(x) = 1 − χA(x).

(iii) For A ∩B, we have χA∩B(x) = χA(x)χB(x).

(iv) For A ∪B, we have

χA∪B(x) = χA(x) + χB(x) − χA(x)χB(x).

(v) The characteristic function of A \B is given by

χ
A\B(x) = χA(x) − χA(x)χB(x).

Exercise 7.1. Prove Proposition 7.1 in detail.
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The next notion is a class of simple function which will help us to construct integrals by
means of an approximating procedure.

Definition 7.2 (Step-function).
A function f : [a, b] → R is called a step-function if and only if f can be written
as

f(x) =
N∑

i=1
ci χAi(x) (7.1.1)

for ci ∈ R and Ai ⊆ [a, b] intervals for i = 1, . . . , n.a

aWe assume that A1 ∪ . . . ∪ AN = [a, b].

Example 7.1. The function f : [0, 10] → R, given by

f(x) =



1 : 0 ≤ x ≤ 3
−3 : 3 < x < 4
8 : 4 ≤ x ≤ 9
2 : 9 < x ≤ 10

is a step function as we can write

f(x) = χ[0,3](x) − 3χ(3,4)(x) + 8χ[4,9](x) + 2χ(9,10](x).
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Exercise 7.2. The intervals Ai in Definition 7.2 can always assumed to be disjoint. We
have

f : [0, 3] → R, f(x) = χ[0,2](x) + 3χ[1,3](x)

which can be written as

f(x) = χ[0,1)(x) + 4χ[1,2](x) + 3χ(2,3](x).

Remark 7.2. Suppose f is a step function as in Definition 7.2. Then, the representation
in (7.1.1) is not unique. Indeed, we may find c̃i ∈ R, Ãi ⊆ I for i = 1, . . . ,M such
that

f(x) =
N∑

i=1
ci χAi(x) =

M∑
i=1

c̃i χÃi
(x).
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Definition 7.3 (The collective set S[a, b] of all step functions on [a, b].).
Denote by S[a, b] the set of all step functions f : [a, b] → R as given in Definition
7.2.

Theorem 7.1 (S[a, b] is a vector space and an algebra).
The set S[a, b] of step-functions on [a, b] is a real vector space, i.e. for all f ,
g ∈ S[a, b], we have

∀λ, µ ∈ R : λf + µg ∈ S[a, b].

Moreover, S[a, b] is an algebra, i.e. for all f, g ∈ S[a, b], we have

f · g ∈ S[a, b].

Equipped with
‖f‖∞ = sup

x∈[a,b]
|f(x)|,

the space S[a, b] is a normed vector space.

Remark 7.3. If f ∈ S[a, b] with

f(x) =
N∑

i=1
ciχAi(x),

where Ai ∩ Aj = ∅, i 6= j, then

‖f‖∞ = max{|c1|, . . . , |cN |}.

Proof of Theorem 7.1.

This follows immediately from Proposition 7.1. You are advised to carry out
some details.
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We state

Proposition 7.2.

Let f ∈ S[a, b]. There exists a finite family of intervals {Bi : i = 0, . . . ,M}
such that Bi ∩Bj = ∅ for i 6= j, B1 ∪ . . . ∪BM = [a, b], and

f(x) =
M∑
i=1

di χBi(x).

Proof (Sketch).

Let f ∈ S[a, b] and

f(x) =
N∑

i=1
ciχAi(x).

The Ai are if the form [ai, bi], (ai, bi), (ai, bi], or [ai, bi). We con-
sider Ãi = (ai, bi) if ai < bi. To treat the ‘lost’ boundary points
{x1, . . . , xL}, we set diχ[xi,xi](x) with

di =
∑

j: xi∈Aj

cj.

Figure 7.1: Illustration of the argument so far.
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To divide the Ãi, we relabel them such that

a = a1 < a2 < . . . < aK = b. (7.1.2)

We start with b1 and but in (7.1.2) where it belongs, then take b2, b3 and
so forth. Finally, we get a partition of [a, b] of the type

a = x1 < x2 < . . . < xL = b.

The intervals (xi, xi+1), together with the one-point sets from the start,
are the sought after Bi in the proposition.

Figure 7.2: Illustration of the rest of the argument.
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To define the integral of step functions, we have to introduce the diameter/length of an
integral.

Definition 7.4 (Diameter diam(I) of an interval).
Let I ⊆ R be an interval. Then, the length/diameter of the interval I , in
symbols diam(I), is defined to be

diam(I) := sup{|x− y| : x, y ∈ I} = sup
x,y∈I

|x− y|.

Remark 7.4. To avoid confusion, we will use diam(I). However, many text use the
notation |I| for the length/diameter of an interval which is not to be confused with the
absolute value.
It is easy to check that

diam([a, b]) = diam([a, b)) = diam((a, b))

= diam((a, b]) = |b− a|.

In general that means that

diam(I) = | sup(I) − inf(I)|.

Next, we define the integral of a step function. We start with some thinking:
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Taking

S[a, b] 3 f(x) =
N∑

i=1
ciχAi(x)

and thinking intuitively, we would like to set

I(f) :=
N∑

i=1
ci diam(Ai). (7.1.3)

However, as said in Remark 7.2, we need to know that I(f) does not change if we
write f differently. If we have two arbitrary representations

f(x) =
N∑

i=1
ci χAi(x) =

M∑
i=1

c̃i χÃi
(x). (7.1.4)

we can subtract them and are left to prove that the 0-function has integral 0 no matter
how we write it as a step function. To do that, we state

Lemma 7.1.

Let f ∈ S[a, b]. Then,

|I(f)| ≤ |b− a|‖f‖∞

independently of the representation of f .

With that, we immediately get

Corollary 7.1.

If f ∈ S[a, b] with f ≡ 0, we have I(f) = 0.

which shows that (7.1.3) is independent of the representation of f , i.e.

N∑
i=1

ci diam(Ai) =
M∑
i=1

c̃i diam(Ãi)

for (7.1.4).
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Thus we can state

Definition and Theorem 7.2 (Step function integral).
Let I ⊆ R be an interval and f : I → R be a step function. Then, the integral
of f , denoted by I(f), is defined as

I(f) =
N∑

i=1
ci diam(Ai),

where
f(x) =

N∑
i=1

ci χAi(x). (7.1.5)

The value of I(f) does not depend on the particular representation (7.1.5).

Figure 7.3: Illustration of the step-function integral.



CHAPTER 7. INTEGRATION ON R1 184

7.1.1 Properties of the step function integral I(f)

Let us collect and prove a couple of properties of the step-function integral.

Theorem 7.3 (Properties of I(f)).
The following properties hold for

I : S[a, b] → R.

(i) If f ∈ S[a, b], then |f | ∈ S[a, b]. Further, it holds

I(f) ≤ I(|f |).

(ii) The operator I is linear, i.e. for all f, g ∈ S[a, b] and all α, β ∈ R,
we have

I(αf + βg) = αI(f) + βI(g).

(iii) For all f ∈ S[a, b], we have

|I(f)| ≤ |b− a|‖f‖∞.

(iv) If f ∈ S[a, b] and f(x) ≥ 0 for all x ∈ [a, b], then

I(f) ≥ 0.

(v) If f, g ∈ S[a, b] and f(x) ≥ g(x) for all x ∈ [a, b], then

I(f) ≥ I(g).

Figure 7.4: Illustration of (iii).
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Proof of Theorem 7.3.

(i) If f is written as

f(x) =
N∑

i=1
ciχAi(x)

with disjoint Ai (see Proposition 7.2), then |f | can be written as

|f |(x) =
N∑

i=1
|ci|χAi(x).

Using Theorem 7.2 and

∀x ∈ [a, b] :
N∑

i=1
ciχAi(x) ≤

N∑
i=1

|ci|χAi(x),

we get the result.

(ii) This is an immediate consequence of Theorem 7.1.

(iii)
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(iv) We rewrite f with non-intersecting intervals

f(x) =
N∑

i=1
ciχAi(x).

Thus, ci ≥ 0 for all i = 1, . . . , N . Thus, by Definition 7.1.3, we
get I(f) ≥ 0 as the sum of non-negative numbers is non-negative.

(v) Follows from (iii) realising that f − g ∈ S[a, b] (see Theorem 7.1)
and that f(x) − g(x) ≥ 0 for all x ∈ [a, b].
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7.2 Regulated functions and their integrals

Using step functions and uniform convergence, we introduce a new class of functions for
which we can easily construct an integral.

Definition 7.5 (Regulated function).
A function f : [a, b] → R is said to be regulated if and only if there exists a
sequence (fn) ⊆ S[a, b] such that fn → f uniformly as n → +∞.
The set of all regulated functions on [a, b] is denoted by R[a, b].

Exercise 7.3. Prove that regulated functions are bounded.
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Remark 7.5. One can characterize regulated functions as follows: a function f :
[a, b] → R is regulated if and only if both the limit

lim
x→c−

f(x) and lim
x→c+

f(x)

exist for all c ∈ (a, b) as well as f(a+) and f(b−). This is due to Dieudonné.1

Theorem 7.4 (R[a, b] is a vector space and an algebra).
The set R[a, b] is a real vector space, i.e. for all f , g ∈ R[a, b], we have

∀λ, µ ∈ R : λf + µg ∈ R[a, b].

Moreover, R[a, b] is an algebra, i.e. for all f, g ∈ R[a, b], we have

f · g ∈ R[a, b].

Equipped with
‖f‖∞ = sup

x∈[a,b]
|f(x)|,

the space R[a, b] is a normed vector space.

Exercise 7.4. Prove Theorem 7.4.

1Jean Dieudonné (1906–1992) French mathematician.
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We slightly extend the notion of a continuous function to piecewise continuous functions.

Definition 7.6 (Piecewise continuous function).
A function f : [a, b] → R is said to be piecewise continuous if and only if there
exist finitely many points x1, . . . , xn ∈ [a, b] such that

(i) f is continuous on [a, b] \ {x1, . . . , xn} and

(ii) the limits
lim

x→xk+
f(x) and lim

x→xk−
f(x)

exist for all k = 1, . . . , n.
We denote the set of all piecewise continuous functions f : [a, b] → R

by PC[a, b].

Figure 7.5: Illustration of piecewise continuous functions.
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Theorem 7.5 (PC[a, b] ⊆ R([a, b])).
Let f ∈ PC[a, b]. Then f ∈ R[a, b].

To prove Theorem 7.5, we introduce the notion of uniform continuity and then Heine’s
theorem which says that all functions which are continuous on a compact set are uni-
formly continuous.

Definition 7.7 (Uniform continuity).
Let I be an interval. A function f : I → R said to be uniformly continuous if
and only if for all ε > 0 there exists δ > 0 such that

|x− y| < δ ⇒ |f(x) − f(y)| < ε.

Exercise 7.5. Let I ⊆ R be an interval and f be uniformly continuous on I . Show
that f is continuous on I .

Remark 7.6. Let us contrast the definition of continuity again against uniform conti-
nuity: for the first, we have

∀x ∈ [a, b] ∀ε > 0 ∃δ > 0 : |x− y| < δ ⇒ |f(x) − f(y)| < ε

while uniform continuity means

∀ε > 0 ∃δ > 0 ∀x, y ∈ [a, b] : |x− y| < δ ⇒ |f(x) − f(y)| < ε.

Theorem 7.6 (Heine’s theorem).
Let f : [a, b] → R be continuous. Then, f is uniformly continuous on [a, b].
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Proof of Theorem 7.6.

Since f is continuous at every x ∈ [a, b], there exists δx > 0 such that

y ∈ [a, b], |x− y| < δx ⇒ |f(x) − f(y)| < ε

2 .

We define
B δx

2
(x) =

{
y ∈ [a, b] : |x− y| < δx

2

}
.

The B δx
2

(x) form an open cover of [a, b]. Since [a, b] is compact, there
exists a finite sub-cover B δx1

2
(x1), . . . , B δxk

2
(xk) still covering [a, b]. Let

now

If now x, y ∈ [a, b] with |x− y| < δ, we claim that we have

|f(x) − f(y)| < ε.

Since the B δx1
2

(x1), . . . , B δxk
2

(xk) cover [a, b], we have that there exists

a j ∈ {1, . . . , k} such that x ∈ B δxj
2

(xj), i.e. |x− xj| <
δxj

2 < δxj

and, therefore, |f(x) − f(xj)| < ε
2 .

Moreover, we have

|y − xj| ≤ |y − x| + |x− xj|

<
δxj

2 +
δxj

2 = δxj

which then gives |f(y) − f(xj)| < ε
2 .

Thus,

|f(y) − f(x)| ≤ |f(x) − f(xj)| + |f(y) − f(xj)|

<
ε

2 + ε

2 = ε.
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Proof of Theorem 7.5.

1. We reduce the prove to show that a continuous function on a compact
interval is regulated.
Since f ∈ PC[a, b], there exists a partition a = x1 < x2 < · · · <
xn−1 < xn = b of [a, b] such that f is continuous on (xi, xi+1)
and the limits lim

x→xi+
f(x), lim

x→xi−
f(x) exist for i = 1, . . . , n− 1.

We prove that the restriction of f to the interval (xi, xi+1), denoted
by f |(xi,xi+1), can be uniformly approximated by step functions on
[xi, xi+1]. We can extend f |(xi,xi+1) to a function f |[xi,xi+1] since
we have the left and right limits at the boundary. Then, we glue those
together to get a uniform approximation of f on [a, b].
By this discussion, it is enough to focus on the interval [xi, xi+1],
i.e. without loss of generality, we can assume that f is continuous on
[a, b].

2. So, for every ε > 0, we have to construct a step-function s ∈ S[a, b]
such that ‖f − s‖∞ < ε. By Heine’s Theorem, we have that there
exists a δ > 0 such that

x, y ∈ [a, b], |x− y| < δ ⇒ |f(x) − f(y)| < ε.

Thus, we divide [a, b] into sub-intervals: Pick N ∈ N so large that

|b− a|
N − 1 <

δ

2
and set

xk = a+ (k − 1) b− a

N − 1 , k = 1, . . . , N.

This gives us the partition

[a, b] = [x1, x2) ∪ [x2, x3) ∪ . . .

. . . ∪ [xN−2, xN−1) ∪ [xN−1, xN ].
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Now, we can define a step function s : [a, b] → R by

s(x) =
N−1∑
k=1

ck χAk
(x),

where
∀k ∈ {1, . . . , N − 1} : ck := f(xk)

and
∀k ∈ {1, . . . , N − 1} : Ak = [xk, xk+1)

and AN−1 := [aN−1, aN ]. Then, by construction,

for a y with |x − y| ≤ δ
2 < δ. Thus, |f(x) − s(x)| < ε and,

hence,
‖f − s‖∞ = sup

x∈[a,b]
|f(x) − s(x)| < ε.

This concludes the proof.



CHAPTER 7. INTEGRATION ON R1 195

Corollary 7.2 (C[a, b] ⊆ R[a, b]).
Continuous functions f : [a, b] → R are regulated on [a, b].

Remark 7.7. We say that a set A ⊆ Rd is dense in Rd if for every x ∈ Rd there
exists a sequence (xn) ⊆ A such that (xn) → x as n → +∞. An example is Q in
R or Qd in Rd.
Here, we have a similar situation. The space S[a, b] is dense in PC[a, b] since we
clearly have S[a, b] ⊆ PC[a, b] and for every f ∈ PC[a, b] there exists a sequence
(fn) ⊆ S[a, b] with fn → f uniformly, i.e. using dist(f, g) = ‖f − g‖∞ as a
distance. This is the content of Theorem 7.5.

Figure 7.6: Illustration of the relation in Remark 7.7.
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Theorem 7.7 (Construction of the Regulated Integral).
Suppose f ∈ R[a, b] and let (fn) ⊆ S[a, b] be a sequence of step-functions such
that fn → f uniformly as n → +∞.
Then the sequence (I(fn)) ⊆ R of step-function integrals converges and the limit
is independent of the particular sequence (fn).a,b

aThe Regulated Integral is also sometimes called the Cauchy-Riemann Integral.
bThe integral I(fn) is constructed in Definition/Theorem 7.2.

Proof.
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Definition 7.8 (Regulated Integral).
Let f ∈ R[a, b] and (fn) ⊆ S[a, b] be an arbitrary sequence such that fn → f

uniformly as n → +∞. Then, the regulated integrala,b is defined by

b∫
a

f(x)dx := lim
n→+∞

I(fn).

aThe Regulated Integral is also sometimes called the Cauchy-Riemann Integral.
bThe regulated integral was introduced by Dieudonne in Foundations of Modem Analysis

(1960) and N. Bourbaki Fonctions d’une Variable Réelle (1976).

We agree on the following conventions

• We may write ∫
[a,b]

f(x)dx =
b∫

a

f(x)dx.

• If a > b, we define
b∫

a

f(x)dx := −
a∫

b

f(x)dx.

• We also set
a∫

a

f(x)dx = 0.



CHAPTER 7. INTEGRATION ON R1 199

Theorem 7.8 (Properties of the Regulated Integral).
Let f, g ∈ R[a, b]. Then

(i) for all λ, µ ∈ R, we have

b∫
a

(
λf(x) + µg(x)

)
dx = λ

b∫
a

f(x)dx+ µ
b∫

a

g(x)dx.

(ii) for any c ∈ [a, b], we have

b∫
a

f(x)dx =
c∫

a

f(x)dx+
b∫

c

f(x)dx.

(iii) if f(x) ≥ 0 for all x ∈ [a, b] then

b∫
a

f(x)dx ≥ 0.

(iv) if f(x) ≥ g(x) for all x ∈ [a, b], then

b∫
a

f(x)dx ≥
b∫

a

g(x)dx.

(v)

∣∣∣∣∣∣∣
b∫

a

f(x)dx

∣∣∣∣∣∣∣ ≤
b∫

a

|f(x)|dx,

(vi)

∣∣∣∣∣∣∣
b∫

a

f(x)dx

∣∣∣∣∣∣∣ ≤ |b− a|‖f‖∞, and

(vii)

∣∣∣∣∣∣∣
b∫

a

f(x)g(x)dx

∣∣∣∣∣∣∣ ≤
b∫

a

|g(x)||f(x)|dx ≤ ‖g‖∞

b∫
a

|f(x)|dx.
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Remark 7.8. The last Theorem implies in particular that the Regulated Integral (Cauchy–
Riemann Integral) is a linear map from PC[a, b] to R in the sense of Definition A.15.

Exercise 7.6. Prove Theorem 7.8. (You should attempt this if you feel well prepared
and have scored 80 or higher in Analysis 1.)

7.2.1 Higher dimensions

It is clear that one can develop a similar theory on cuboidsQ := [a1, b1]×. . .×[ad, bd]
by using the characteristic functions

χQ(x1, . . . , xd) = χ[a1,b1](x1) · . . . · χ[ad,bd](xd).

One needs to say what regulated functions are, define their integral and prove that some
well-known classes as C(Q) are regulated.

To treat more general domains, one needs to prove that certain classes of sub-sets
of Rd can be well approximated by cuboids and then uses a second limit process to
define the integral.
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7.3 The Riemann-Integral

To get to one of the most important integral definitions, we need to introduce some
notation.

Definition 7.9 (Upper- and lower integral).
Let f : [a, b] → R. Then, we say that

∫ b

a
f(x)dx = inf

{ ∫ b

a
h(x)dx : h ∈ S[a, b], h ≥ f

}

is the upper integral of f and
∫ b

a
f(x)dx = sup

{ ∫ b

a
h(x)dx : h ∈ S[a, b], h ≤ f

}

the lower integral of f .

Remark 7.9. We can reformulate the above definition in a more compact form2: Con-
sider f : [a, b] → R and define the upper integral

I(f) :=
∫ b

a
f(x)dx = inf

h∈S[a,b]
h≥f

I(h)

and the lower integral

I(f) :=
∫ b

a
f(x)dx = sup

h∈S[a,b]
h≤f

I(h).

Example 7.2. For any f ∈ S[a, b], we have that
∫ b

a
f(x)dx =

∫ b

a
f(x)dx =

∫ b

a
f(x)dx.

2I am presenting this notation here since some of the solutions to older exam questions use it. You
may entirely use the notation in Definition 7.9. However, for proofs it is sometimes suitable to use the
shorter notation to safe some space.
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Figure 7.7: A bit of thinking on upper- and lower integrals



CHAPTER 7. INTEGRATION ON R1 203

Remark 7.10. We clearly have that
∫ b

a
f(x)dx ≤

∫ b

a
f(x)dx (7.3.1)

for any function f : [a, b] → R.

Definition 7.10 (Riemanna integrability).
A bounded function f : [a, b] → R is said to be Riemann-integrable if and only
if ∫ b

a
f(x)dx =

∫ b

a
f(x)dx.

In that case, we set ∫ b

a
f(x)dx :=

∫ b

a
f(x)dx.

aBernhard Riemann (1826–1866), German mathematician.

As on p. 196, we agree on the following conventions

• We may write ∫
[a,b]

f(x)dx =
b∫

a

f(x)dx.

• If a > b, we define
b∫

a

f(x)dx := −
a∫

b

f(x)dx.

• We also set
a∫

a

f(x)dx = 0.
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Example 7.3. Not all functions are Riemann integrable. The Dirichlet function f(x) :=
χ
Q(x) is not Riemann-integrable on any compact interval [a, b] ⊆ R, a < b.

We have that for any step-function h ∈ S[a, b] with h ≥ f must hold that h(x) ≥ 1
for all but finitely many x ∈ [a, b]. Thus,

Further, for all h ∈ S[a, b] with h ≤ f must hold that h(x) ≤ 0 for all but finitely
many x ∈ [a, b]. Thus,
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Example 7.4. The most basic example of a Riemann-integrable function is a step-
function. See Example 7.2.

To find more classes of functions which are Riemann-integrable, we state that a close
investigation of the proof of Theorem 7.5 yields, with some small changes

Theorem 7.9.

Let f ∈ C[a, b]. Then, for every ε > 0, there exist s1, s2 ∈ S[a, b] such that

∀x ∈ [a, b] : s1(x) ≤ f(x) ≤ s2

(shorter s1 ≤ f ≤ s2) and

‖s1 − s2‖∞ < ε.

Now we inspect the definition of Riemann integrability and obtain the following charac-
terisation of bounded Riemann-integrable functions.

Theorem 7.10 (Characterisation of Riemann integrability).
A function f : [a, b] → R is Riemann integrable if and only if it is bounded and for
every ε > 0 there exist step-functions s1, s2 ∈ S[a, b] such that s1 ≤ f ≤ s2

and ∫ b

a
s2(x)dx−

∫ b

a
s1(x)dx < ε.
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Form that, we get the immediate corollary

Corollary 7.3 (Riemann integrability of regulated functions).
Let f ∈ R[a, b], then f is Riemann integrable and

∫ b

a
f(x)dx︸ ︷︷ ︸

Riemann

= lim
n→+∞

I(fn)︸ ︷︷ ︸
Regulated

where (fn) ⊆ S[a, b] is an arbitrary sequence with fn → f uniformly.

From that and Theorem 7.5 and Corollary 7.2 (or combining Theorem 7.9 with Theorem
7.10) we obtain

Corollary 7.4.

If f ∈ PC[a, b], then f is Riemann integrable and
∫ b

a
f(x)dx︸ ︷︷ ︸

Riemann

= lim
n→+∞

I(fn)︸ ︷︷ ︸
Regulated

where (fn) ⊆ S[a, b] is an arbitrary sequence with fn → f uniformly.

and

Corollary 7.5.

If f ∈ C[a, b], then f is Riemann integrable and
∫ b

a
f(x)dx︸ ︷︷ ︸

Riemann

= lim
n→+∞

I(fn)︸ ︷︷ ︸
Regulated

where (fn) ⊆ S[a, b] is an arbitrary sequence with fn → f uniformly.
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Now one could think that Riemann Integral and Regulated Integral are the same notions.
That is is, however, not the case. In the next example, we show that there exist Riemann-
integrable functions which are not regulated. Thus, the Riemann integral is more general
than the integral for regulated functions.

Reading 8. Example 7.5 forms the reading of this week. Please study it carefully with
some extra paper and a pencil. Work out all the details you need and try to draw some
illuminating pictures.

Example 7.5. We give an example of a function which is Riemann integrable but not
regulated. Consider f : [0, 1] → R, defined by

f(x) =

 1 : x = 1
n , n ∈ N

0 : x 6= 1
n , n ∈ N

.

Though f is not regulated, the Riemann integral exists

1∫
0
f(x)dx = 0.

First we discuss that the Riemann integral indeed exists and is equal to 0. To this end,
we define

hn(x) =

 1 : x ∈
[
0, 1

n

]
f(x) : x ∈

( 1
n , 1

] .

By construction, we have hn ≥ f . Further, since hn is constant equal to 1 on [0, 1
n ]

and only at finitely many points different from constant equal to 0, on [ 1
n , 1], we get

1∫
0
hn(x)dx = 1

n
.

We further have

∫ b

a
f(x)dx = inf

h∈S[0,1]
h≥f

1∫
0
h(x)dx ≤ inf

n∈N

1∫
0
hn(x)dx = inf

n∈N

1
n

= 0.
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Since 0 ≤ f(x), we also have

0 ≤ sup
h∈S([a,b])

h≤f

1∫
0
h(x)dx =

∫ b

a
f(x)dx.

By (7.3.1), we get
0 ≤

∫ b

a
f(x)dx ≤

∫ b

a
f(x)dx ≤ 0.

Thus they are all equal to 0 which is the definition of f having 0-Riemann integral.

Now, we see that f is not regulated. To this end we will assume that it is. Thus,
let

g(x) =
N∑

i=1
ciχIi(x)

with I1 ∪ . . . ∪ IN = [0, 1] and Ii ∩ Ij = ∅ for i 6= j (see Proposition 7.2) such
that ‖f − g‖∞ < ε. Then, the Ii, i = 1, . . . , N define a partition

0 < x1 < x2 < . . . < xn = b

of [0, 1]. Then, g is constant on (0, x1), say equal to c1. By the definition of f , there
exist x1, x2 ∈ (0, x1) such that f(x1) = 0 and f(x2) = 1. Next, we have

|f(x1) − g(x1)| = |c1| and |f(x2) − g(x2)| = |1 − c1|. (7.3.2)

and |c1| + |1 − c1| ≥ 1 which implies |c1| ≥ 1
2 or |1 − c1| ≥ 1

2 . By (7.3.2) that
implies ε > 1

2 . Thus, f can not be uniformly approximated by a step function.
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7.3.1 Properties of the Riemann Integral

Using Theorem 7.10, we can show

Theorem 7.11 (Properties of the Riemann Integral).
Let f, g : [a, b] → R be Riemann integrable Then

(i) for λ, µ ∈ R, the function λf + µg is Riemann-integrable and

b∫
a

λf(x) + µg(x)dx = λ
b∫

a

f(x)dx+ µ
b∫

a

g(x)dx.

(ii) the functions f
∣∣∣[a,c], f

∣∣∣[c,b]
a are Riemann-integrable for any c ∈ [a, b]

and
b∫

a

f(x)dx =
c∫

a

f(x)dx+
b∫

c

f(x)dx.

(iii)
b∫

a

f(x)dx ≥ 0 if f(x) ≥ 0 for all x ∈ [a, b].

(iv)
b∫

a

f(x)dx ≥
b∫

a

g(x)dx if f(x) ≥ g(x) for all x ∈ [a, b].

(v) the function |f | is Riemann-integrable and∣∣∣∣∣∣∣
b∫

a

f(x)dx

∣∣∣∣∣∣∣ ≤
b∫

a

|f(x)|dx.

(vi) the function f is bounded and∣∣∣∣∣∣∣
b∫

a

f(x)dx

∣∣∣∣∣∣∣ ≤ |b− a|‖f‖∞.

(vii) the function fg is Riemann-integrable and∣∣∣∣∣∣∣
b∫

a

f(x)g(x)dx

∣∣∣∣∣∣∣ ≤
b∫

a

|g(x)||f(x)|dx ≤ ‖g‖∞

b∫
a

|f(x)|dx.

aLet f : A → B and C ⊆ A. Then, f
∣∣∣
C

denotes the restriction of f to the set C, i.e the
function g : C → B with g(x) = f(x) for x ∈ C.
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7.4 The fundamental theorem of calculus and

primitives

We start with the introduction of the notion of a

Definition 7.11 (Primitive of a function).
Let f : [a, b] → R be a function. A function F : [a, b] → R is called a
primitive or indefinite integrala of f if F is differentiable and F ′(x) = f(x)
for all x ∈ [a, b].

aSome people say antiderivative, though that is not a good name.

By our previous considerations, the following theorem holds true for the notion of Reg-
ulated Integral and Riemann-Integral and both give the same results.

Theorem 7.12 (Fundamental Theorem of Calculus).
Let f ∈ C[a, b] and define F : [a, b] → R by

F (x) :=
x∫

a

f(y)dy. (7.4.1)

Then, F is (uniformly) continuous on [a, b] and differentiable on [a, b] andF ′(x) =
f(x) for all x ∈ [a, b].
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Before we prove this result, let us state some other formulation and corollaries to clear
up the notion of primitive and its relation to definite integrals.

Remark 7.11. In (7.4.1), the choice of the lower limit does not matter. In fact, one
can prove the theorem for

F (x) =
x∫

x0

f(y)dy,

where x0 ∈ [a, b] is arbitrary but fixed. All these F are primitives of f .

An equivalent formulation of Theorem 7.12 is

Theorem 7.13.

Let F ∈ C1[a, b] with F ′(x) = f(x) for all x ∈ [a, b]. Then

b∫
a

f(x)dx = F (b) − F (a).

Remark 7.12. We also sometimes write
b∫

a

f(x)dx = F (x)
∣∣∣∣b
a

=
[
F (x)

]b
a

= F (b) − F (a).

Proof of Theorem 7.13.

We define an auxiliary function G : [a, b] → R by

G(x) = F (x) − F (a) −
x∫

a

f(y)dy.

Then,
G′(x) = f(x) − f(x) = 0.

by Theorem 7.12. Thus, by Lemma 5.1, G is constant and since G(a) = 0
is identically zero. This concludes the proof.
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An immediate corollary (actually just a rewrite) of Theorem 7.13 is the following recon-
struction formula

Corollary 7.6.

Let f ∈ C1[a, b], then

f(x) = f(a) +
x∫

a

f ′(y)dy.

Remark 7.13. The usual notation for a primitive F of f is

F (x) =
∫
f(x)dx+ C. (7.4.2)

The C is due to the fact that two primitives may differ by an additive constant as one
can see from Definition 7.11 and Remark 7.11.
Be aware that the = sign in (7.4.2) equates a function with a set and is therefore in
principal without meaning. The meaning we give it here is that for F , you may choose
any

x∫
a

f(y)dy + C

for any C . Similarly, as discussed in Remark 7.11, one can choose different lower limits
as discussed in .

Remark 7.14. I would like to draw attention to the fact that not all Riemann integrable
functions have primitives. The signum function

f(x) = sgn(x) =


−1 : x < 0
0 : x = 0
1 : x > 0

is integrable on [−1, 1] but there exists no function F such that F ′(x) = sgn(x)
for all x ∈ [−1, 1]. In general, one can say that a function with jumps, as a general
step function for example, can not have a primitive as derivatives can not have jumps.
However, if f is continuous, Theorem 7.12 guarantees the existence of a primitive.
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Proof of Theorem 7.12.
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7.5 Some Rules for Integration

Differentiation is mechanics, integration is art.

I assume that you are familiar with these rules from school and mathematical Methods I
& II. However, for your convenience I state them here and give some proofs for the sake
of completeness.

The next theorem is in some sense the inverse version of the product-rule for differenti-
ation. See Theorem 5.2. Given f and g are differentiable, then we get

(f · g)′ = f ′ · g + f · g′

and, slightly handwavingly, we obtain
∫

(f · g)′dx = f · g =
∫
f ′ · gdx+

∫
f · g′dx

which leads to ∫
f · g′dx = f · g −

∫
f ′ · gdx.

Using Theorem 7.12, we can prove a version for definite integrals.

Theorem 7.14 (Integration by parts).
Suppose f, g ∈ C1[a, b]. Then

b∫
a

f ′(x)g(x)dx = f(b)g(b) − f(a)g(a) −
b∫

a

f(x)g′(x)dx.

Proof.

The proof follows from the product rule in Theorem 5.2 and integration over
[a, b] using the Fundamental Theorem of Calculus, Theorem 7.12.
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The correct use of Theorem 7.14 takes some exercise. With experience, the reader will
learn what kinds of integrals are to be attacked by integration by parts.

Example 7.6. Let us suppose that we want to compute the integral
π∫

0
cos2(x)dx.

We obtain
π∫

0
cos2(x)dx =

[
sin(x) cos(x)

]π
0

+
π∫

0
sin2(x)dx

=
π∫

0
sin2(x)dx. (7.5.1)

At this point it seems that we have not really won much. However, the reader might
remember that cos2(x) + sin2(x) = 1. Therefore, we obtain

π∫
0

sin2(x)dx =
π∫

0

(
1 − cos2(x)

)
dx =

π∫
0

1dx−
π∫

0
cos2(x)dx

= π −
π∫

0
cos2(x)dx.

With that, from (7.5.1), we finally obtain
π∫

0
cos2(x)dx = π

2

and in fact we also showed that
π∫

0
sin2(x)dx = π

2 .

Other very typical examples where integration by parts often leads to results are functions
of the type sin(x)eax+b, cos(x)eax+b and xkeax+b. For more examples and material
to calculate see the module Mathematical Methods.

Theorem 7.15 (Integration by Substitution).
Let [α, β] ⊆ R, [a, b] ⊆ R, f : [α, β] → R be continuous on [a, b], and let
g : [a, b] → [α, β] be differentiable on [a, b]. Further, suppose that g′ is Riemann
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integrable. Then, we have

g(b)∫
g(a)

f(x)dx =
b∫

a

f(g(x))g′(x)dx. (7.5.2)

Proof

Since f is continuous on [a, b] and g is differentiable on [α, β], we have
that f ◦ g : [α, β] → R is well-defined and continuous on [a, b]. Thus
f ◦ g is Riemann integrable.
Since g′ is Riemann integrable and the product of Riemann integrable func-
tions is Riemann integrable (see Theorem 7.11), we have that the right
hand side of (7.5.2) is well defined as is the left hand side. Let F be a
primitive of f . Since F is differentiable (Theorem 7.12), we obtain that
F ◦ g : [a, b] → R is differentiable and by the chain rule (Theorem 5.3),
we get

d

dxF (g(x)) = f(g(x))g′(x)dx.

Thus, we have that
b∫

a

f(g(x))g′(x) dx =
b∫

a

d

dx
F (g(x)) dx.

By Corollary 7.6 (or Theorem 7.13), we obtain
b∫

a

d

dx
F (g(x)) dx = F (g(b)) − F (g(a)) =

g(b)∫
g(a)

f(x)dx.

This concludes the proof.

As for integration by parts, the knowledge of the best choice of substitutions comes
with experience. The reader is encouraged to take the time to simply calculate some
integrals. The reader should not give up at sight of the slightest problem as integration
is really an art. A fantastic book on the matters of this section is [11].
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Example 7.7. Simple examples if the integrand is a function of the type ef(x), cos(f(x)),
or sin(f(x)) with f being a linear function. For instance, for A ∈ R\ {0}, B ∈ R,
we have

b∫
a

eAx+Bdx = 1
A

b∫
a

AeAx+Bdx = 1
A

b∫
a

g′(x)eg(x)dx

= 1
A

Ab+B∫
Aa+B

eydy = 1
A

(
eAb+B − eAa+B

)
.

For such a simple case substitution is a bit of n overkill as the integral of eAx+B is
obvious. See also the discussion at the end of this section.

An interesting integral that students get often asked and that is surprisingly difficult for
them is something like

∫
x2e−x3dx, or

∫
xex2dx.

Do you see how to solve it? The "trick" is that one realises that these integrals are
essentially of the form

∫
f ′(x)ef(x)dx which makes the solution obvious:
∫
f ′(x)ef(x)dx = ef(x) + C.

Compare also Theorem 7.15 and the subsequent notes. To complete the Lecture Notes
let us compute the first example and leave a more general result as an exercise to the
reader: ∫

x2e−x3dx = −1
3
∫

(−3x2)e−x3dx = −1
3e

−x3 + C.

The same "tricks" work obviously for
∫
f ′(x) sin(f(x))dx, and

∫
f ′(x) cos(f(x))dx.

We leave the details also here to the inclined reader. For instance the reader may
formulate and prove a general result that contains the above examples.
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7.6 Uniform convergence and integration

The theorems of this chapter are not examinable in the sense that you do not have to
state them. However, you should understand the examples on the related Problem Sheet.

In this section we consider the questions under which conditions we can exchange inte-
grals with limits, i.e. given a sequence (fn) of functions we ask: When is

lim
n→+∞

b∫
a

fn(x)dx =
b∫

a

lim
n→+∞

fn(x)dx (7.6.1)

true?
In general, the answer depends on the space where the sequences come from and the
type of convergence. A general result is that it usually does not work if one has only
pointwise convergence.
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Figure 7.8: A sequence of continuous fn with fn → 0 pointwise but
1∫
0
fn(x)dx = 1.

In fact, one can even construct a sequence of continuous functions (fn) which converge
pointwise to f ≡ 0 but the limit of the integrals grows unbounded.
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Figure 7.9: A sequence of continuous fn with fn → 0 pointwise but
1∫
0
fn(x)dx =

+∞.
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Thus, in the subsequent theorems, we will be concerned with uniform convergence.

Theorem 7.16.

Let [a, b] be a compact interval and let (fn) ⊆ R[a, b]. Suppose that there exists
f : [a, b] → R such that fn → f uniformly. Then

lim
n→+∞

b∫
a

fn(x)dx =
b∫

a

lim
n→+∞

fn(x)dx. (7.6.2)

Remark 7.15. Since regulated functions are Riemann integrable, we get, under the
hypothesis of Theorem 7.16, that

lim
n→+∞

b∫
a

fn(x)dx =
b∫

a

lim
n→+∞

fn(x)dx.

for Riemann integrals.

To prove Theorem 7.16, we first need another theorem.

Theorem 7.17.

Let (fn) ⊆ R[a, b] and suppose that fn → f uniformly for a function f :
[a, b] → R. Then f ∈ R[a, b].

Proof

Let ε > 0 be arbitrary. Then there exists fn,ε ∈ S[a, b] such that
‖fn−fn,ε‖∞ < ε

2 . Now there exists an n0 ∈ N such that ‖f−fn‖∞ <
ε
2 for all n ≥ n0. Then

‖f − fn,ε‖∞ ≤ ‖f − fn‖∞ + ‖fn − fn,ε‖∞ <
ε

2 + ε

2 = ε.

Thus, f is regulated.
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Remark 7.16. Theorem 7.17 can be improved by saying that R[a, b] is a complete
metric space with respect to d∞(f, g) = ‖f − g‖∞. All that remains to be shown is
that if (fn) ⊆ R[a, b] is a Cauchy sequence then there exists f ∈ R[a, b] such that
fn → f uniformly. Indeed, for all ε > 0 there exists n0 ∈ N such that

∀m,n ≥ n0 : sup
x∈[a,b]

|fn(x) − fm(x)| < ε.

Thus, for all x ∈ [a, b], we have that (fn(x)) is a Cauchy sequence in R. Since R is
a complete space, it is convergent. Thus, we can set

f(x) = lim
n→+∞

fn(x).

By the argument in the proof of Theorem 7.17, we have that f ∈ R[a, b].

Proof of Theorem 7.16.

By Theorem 7.17, we have that f ∈ R[a, b]. Then, we get

b∫
a

fn(x)dx−
b∫

a

f(x)dx =
b∫

a

(fn(x) − f(x))dx

which are all well-defined since f − fn ∈ R[a, b]. Thus, we can estimate∣∣∣∣∣∣∣
b∫

a

(fn(x) − f(x))dx

∣∣∣∣∣∣∣ ≤
b∫

a

|fn(x) − f(x)|dx

≤ |b− a| sup
x∈[a,b]

|fn(x) − f(x)|.

Since fn → f uniformly, we have that for all ε > 0 there exists n0 ∈ N
such that

∀n ≥ n0 : ‖fn − f‖∞ <
ε

|b− a|
.

Thus, for all ε > 0 there exists n0 ∈ N such that

∀n ≥ n0 :

∣∣∣∣∣∣∣
b∫

a

fn(x)dx−
b∫

a

f(x)dx

∣∣∣∣∣∣∣ < ε.

Thus, (7.6.3) holds. (See Definition A.16.)
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Since continuous functions are regulated, we also get

Corollary 7.7.

Let [a, b] be a compact interval and let (fn) ⊆ C[a, b]. Suppose that there exists
f : [a, b] → R such that fn → f uniformly. Then

lim
n→+∞

b∫
a

fn(x)dx =
b∫

a

lim
n→+∞

fn(x)dx. (7.6.3)

The integral can be interpreted as Regulated (Cauchy-Riemann) or Riemann integral.

Exercise 7.7. Corollary 7.7 follows from Theorem 7.16 by Theorem 7.5. However, use
the proof of Theorem 7.16 above as a blue print to prove Corollary 7.7 again in detail
by bare hands.



Chapter

8
Improper Integrals on on R1

Improper integrals are integrals over non-compact sets that are written as limits of
integrals over compact sets.

Example 8.1. Consider ∫
(0,1]

1√
x
dx

is an improper integral since lim
x→0+

1√
x

= +∞. The integral should be understood as

1∫
0

1√
x
dx = lim

ε→0+

1∫
ε

1√
x
dx. (8.0.1)

The problem is that since (0, 1] is not compact and 1√
x

is not bounded, 1√
x

is not a
uniform limit of step functions and, hence, the definition of the Cauchy-Riemann Integral
does not work. However, considering the right hand side of (8.0.1), we have the function
f(x) = 1√

x
over the compact interval [ε, 1]. Since f is continuous there, it is, by

Heine’s theorem, also uniformly continuous. Thus, we can define its Regulated Integral
(or its Riemann integral) which would of course depend on ε.
So, (8.0.1) says that we say that the integral over (0, 1] exists if the limit lim

ε→0+
Iε(f)

exists.

225
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Example 8.2. Similarly, we would like to interpret

∞∫
0
f(x)dx as lim

R→+∞

R∫
0
f(x)dx

if the limit exists and
+∞∫

−∞
f(x)dx = lim

R→+∞

0∫
−R

f(x)dx+ lim
R→+∞

R∫
0
f(x)dx

if both limits exist. Note that this is not to say that

lim
R→+∞

∫ R

−R
f(x)dx

must exist as the latter could exist without the two limits

lim
R→+∞

0∫
−R

f(x)dx and lim
R→+∞

R∫
0
f(x)dx

existing. Consider for example

f(x) =


1
x : x ∈ R \ [−1, 1]
x : x ∈ [−1, 1]

.

To make the above a bit more precise, we say that
∫
I f(x)dx is an improper integral

of f : I → R if diam(I) = +∞ or there exists an x0 ∈ cl(I) such that
lim

x→x0
|f(x)| = +∞. Examples are

1∫
0

1
x

dx,
+∞∫
1

1
x

dx.
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Definition 8.1 (Convergence of improper integrals).
Let I ⊆ R be an interval and f : I → R. Further,

∫
I f(x)dx be an improper

integral and (In) be a sequence of compact intervals In ⊆ I with In+1 ⊇ In

such that cl(I) =
∞⋃

n=1
In. If f

∣∣∣
In

is regulated (or Riemann integrable) for every

n ≥ 1, then
∫
I f(x)dx is said to be convergent (or f is integrable over I) if the

sequence (An) ⊆ R, defined by

An :=
∫
In

f(x)dx,

converges.a
aBy cl(I) we denote the closure of I, i.e. the smallest closed set that contains I.

A specialisation of the above integral is given by

Definition 8.2 (Special case of Definition 8.1).
Let f : [0,+∞) → R be continuous. Then, we say that

+∞∫
0
f(x)dx

converges if and only if

lim
R→+∞

R∫
0
f(x)dx

exists.
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Example 8.3. We consider the integral

+∞∫
π

sin(x)
x

dx.

as the function f is clearly continuous on the intervals [kπ, (k + 1)π], k ≥ 1 and

⋃
k∈N

[kπ, (k + 1)π] = [π,+∞),

we only have to check whether there is a constant C > 0 such that

(k+1)π∫
kπ

sin(x)
x

dx ≤ C ∀n ≥ 1.

We have ∣∣∣∣∣∣∣
(k+1)π∫

kπ

sin(x)
x

dx

∣∣∣∣∣∣∣ ≤
(k+1)π∫

kπ

∣∣∣∣∣sin(x)
x

∣∣∣∣∣ dx ≤
(k+1)π∫

kπ

1
x
dx ≤ 1

k

and
(k+1)π∫

kπ

sin(x)
x

dx =
(k+1)π∫

kπ

(−1)k

∣∣∣∣∣sin(x)
x

∣∣∣∣∣ dx, ∀k ≥ 1.

Hence, by Leibniz’ criterion, we have that
∫
In

f(x)dx converges with

In :=
⋃

1≤k≤n

[kπ, (k + 1)π]

and ∫
In

f(x)dx =
n∑

k=1
(−1)k

(k+1)π∫
kπ

∣∣∣∣∣sin(x)
x

∣∣∣∣∣ dx.
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In analogy to our treatment of sequences, we further introduce the notion of absolute
integrability.

Definition 8.3 (Absolute Integrability on R).
Let I ⊆ R be an interval and let (In), be a sequence of compact intervals In ⊆ I

such that cl(I) =
∞⋃

n=1
In, In+1 ⊇ In. Then, a function f : I → R with the

property that f
∣∣∣
In

is regulated (or Riemann-integrable) for any n ∈ N is said to
be absolutely integrablea if the sequence (An)n∈N0 , defined by

An :=
∫
In

|f(x)|dx,

converges.b
aWe also say absolutely convergent.
bBy cl(I) we denote the closure of I, i.e. the smallest closed set that contains I.

In the spirit of Definition 8.2, we state a specialisation of the above integral by

Definition 8.4 (Special case of Definition 8.3).
Let f : [0,+∞) → R be continuous. Then, we say that

+∞∫
0
f(x)dx

converges absolutely if and only if

lim
R→+∞

R∫
0

|f(x)|dx

exists.

Example 8.4. A function f : R → R is called absolutely integrable if

lim
R→+∞

R∫
−R

|f(x)|dx < +∞.
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Example 8.5. Let us consider
+∞∫
1

dx

x2 .

With In := [1, n], we get

∫
In

dx

x2 =
n∫

1

dx

x2 = 1 − 1
n

which converges to 1. Thus, we also have that

+∞∫
1

sin(x)
x2 dx

is absolutely convergent since

+∞∫
1

∣∣∣∣∣sin(x)
x2

∣∣∣∣∣ dx ≤
+∞∫
1

dx

x2 < +∞

as seen above.

Example 8.6. The function sin(x)
x is not absolutely integrable. Thus,

+∞∫
−∞

∣∣∣∣∣sin(x)
x

∣∣∣∣∣ dx = +∞.

However, sin(x)
x is integrable as we have seen, i.e.

+∞∫
−∞

sin(x)
x

dx

converges.
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8.1 Appendix : The closure of sets

Definition 8.5 (Closure).
Let Ω ⊆ Rd and denote by Ω′ the set of all limit points of Ω. Then, we define
the closure of Ω by

cl(Ω) = Ω ∪ Ω′.

Remark 8.1. By definition we have that cl(Ω) is closed and that Ω ⊆ cl(Ω).

Remark 8.2. The closure cl(Ω) of a set Ω is the smallest closed set that contains Ω,
i.e.

cl(Ω) =
⋂

C⊇Ω
C closed

C.

Can you prove that?

Example 8.7. Simple examples are cl((a, b)) = [a, b], cl(Br(x0)) = {x ∈ Rd :
‖x− x0‖2 ≤ r}. Can you find more yourself?



Chapter

9
Differentiability and derivative on Rd

In this chapter, we generalize the notion of differentiability from function of one variable
to functions of several variables. Further, we will allow the co-domain of f to be Rm

for m ≥ 1.

9.1 Definition

The definition we are going to start with, is a multi-dimensional generalization of the
characterisation of differentiation at a point by approximation by a linear function as
described in point 2 of Remark 5.2.

Definition 9.1 (Total Derivative).
Let Ω ⊆ Rd be an open set and let f : Ω → Rm be a function. Then, f is said
to be differentiable at x0∈ Ω if there exists a linear map L : Rd → Rm and a
function r : Rd → Rm such that

f(x0 + h) = f(x0) + Lh+ r(h) (9.1.1)

and
lim
h→0

‖r(h)‖2
‖h‖2

= 0. (9.1.2)

The linear map L is called the total derivative of f and is denoted by Df(x0).

232
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Remark 9.1. It is worth noting, that the map L depends on x0, i.e. L = L(x0).
Also, the dependence on x0 has not to be linear but only L(x0) has to be a linear map
for every fixed x0. See also the next example.

Example 9.1. We consider

f : R2 → R2, f(x1, x2) =
x3

1 + x2

x1 + x2

 .
We set x0 = [x1 x2]T , h = [h1 h2]T and calculate
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By that we have that f is differentiable for all x0 if we can show

lim
h→0

‖r(h)‖2
‖h‖2

= 0 (9.1.3)

for

r(h) =
3h2

1x1 + h3
1

0

 .

The matrix

3x2
1 1

1 1

 which is the total derivative Df(x0) for the f in the example,

depends on the point where the derivative is computed and the dependence is not linear.
However, the matrix defines a linear map from R2 to R2 byh1

h2

 7→

3x2
1 1

1 1


h1

h2

 .
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Exercise 9.1. Prove (9.1.3) in the previous example.
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One can give an alternative definition of differentiability by

Definition 9.2 (Total Derivative II).
Let Ω ⊂ Rd be an open set and let f : Ω → Rm be a function. Then, f is
called differentiable at x0 ∈ Ω if there exists a linear map L : Rd → Rm and a
function r : Rd → Rm such that

lim
h→0

‖f(x0 + h) − f(x0) − Lh‖2
‖h‖2

= 0. (9.1.4)

Lemma 9.1.

Definitions 9.1 and 9.2 are equivalent.

Proof. [⇒] Let Ω ⊆ Rd be an open set and let f : Ω → Rm be a function. Let f
be differentiable by Definition 9.1. From (9.1.1), we get

f(x0 + h) − f(x0) − Lh = r(h).

Then, taking norms on both sides, dividing by ‖h‖2 and the limit h → 0, we get
(9.1.4) by (9.1.2). Thus, f is differentiable at x0 by Definition 9.2.
[⇐]: Let Ω ⊆ Rd be an open set and let f : Ω → Rm be a function. Let f be
differentiable by Definition 9.2. Take the L from (9.1.1); then we have

f(x0 + h) = f(x0) + f(x0 + h) − f(x0)

= f(x0) + L · h+ f(x0 + h) − f(x0) − Lh.

Setting r(h) = f(x0 + h) − f(x0) − Lh, we are left to prove that

lim
h→0

‖r(h)‖2
‖h‖2

= 0.

This follows from (9.1.4) by

lim
h→0

‖r(h)‖2
‖h‖2

= lim
h→0

‖f(x0 + h) − f(x0) − Lh‖2
‖h‖2

= 0.
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Lemma 9.2 (Uniqueness of the total derivative).
Let Ω ⊆ Rd be open and f : Ω → Rm be differentiable at x0. Then, L in
Definition 9.2 (and by the last Lemma in Definition 9.1) is uniquely determined.

Proof. Let L, M : Rd → Rm be linear maps satisfying at x0 (9.1.1). Then

lim
h→0

‖Lh−Mh‖2
‖h‖2

= lim
h→0

‖ − f(x0 + h) + f(x0) + Lh−Mh+ f(x0 + h) − f(x0)‖2
‖h‖2

≤ lim
h→0

‖ − f(x0 + h) + f(x0) + Lh‖2
‖h‖2

+ lim
h→0

‖ −Mh+ f(x0 + h) − f(x0)‖2
‖h‖2

= 0.

Now, let v ∈ Rd \ {0} and set h = tv. Then, by the linearity of M and L, we get
Mh = tMv and Lh = tLv. Thus, we obtain

lim
h→0

‖Lh−Mh‖2
‖h‖2

= 0

= lim
t→0

|t|‖Lv −Mv‖2
|t|‖v‖2

= ‖Lv −Mv‖2
‖v‖2

.

Hence, (L−M)v must be zero. This concludes the proof.

Remark 9.2. The total derivative has different symbols in the literature. Sometimes it
is just denoted by f ′(x0) as in the 1D case or by dfx0 .

Remark 9.3. As in the 1D case, we can write (9.1.1) as

f(x) = f(x0) + L(x− x0) + r(x− x0),

where
lim

x→x0

‖r(x− x0)‖2
‖x− x0‖2

= 0.

We can also write this with the small-o notation:

f(x0 + h) = f(x0) + Lh+ o(h).

https://en.wikipedia.org/wiki/Big_O_notation#Little-o_notation
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9.1.1 Directional Derivative

Restricting the directions of h in Definition 9.1, we can give

Definition 9.3 (Directional Derivative).
Let v ∈ Rd \ {0}, Ω ⊆ Rd open, x0 ∈ Ω, and f : Ω → Rm. Then, if

lim
t→0

1
t

(
f(x0 + tv) − f(x0)

)
(9.1.5)

exists, it is called the directional derivative of f in direction v at x0 and denoted
by Dvf(x0).

Theorem 9.1.

Let Ω ⊆ Rd open, x0 ∈ Ω, and f : Ω → Rm. Then, if f is differentiable at
x0, the directional derivative of f at x0 exists for all v ∈ Rd \ {0} and we have
Dvf(x0) = Df(x0)v.
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9.1.2 Partial Derivatives

An important special case of directional derivatives, according to Definition 9.3, are the
so-called partial derivatives of a function f : Ω → Rm. We set v = ek, where ek is
the kth vector of the canonical basis of Rd, i.e.

ek =



ek1

ek2
...
ekn


, ekj = δkj,

where δkj is the Kronecker function given by

δkj =

 0 : j 6= k

1 : j = k
.

Then, letting ẽj be the canonical basis of Rm, we can write

If f is differentiable (see Def. 9.1), we obtain from (9.1.5) that

lim
t→0

1
t

(
f(x0 + tek) − f(x0)

)
=

m∑
j=1

lim
t→0

t−1(fj(x0 + tek) − fj(x0)
)
ẽj

=


lim
t→0

1
t

(
f1(x0 + tek) − f1(x0)

)
...

lim
t→0

1
t

(
fm(x0 + tek) − fm(x0)

)
 .
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We set

We give these special directional derivatives a name by

Definition 9.4 (Partial Derivatives).
Let Ω ⊆ Rd open, p ∈ Ω, and f : Ω → Rm. If the limit

lim
h→0

fj(p1, . . . , pk−1, pk + h, pk+1, . . . , pn) − fj(p1, . . . , pn)
h

(9.1.6)

exists, we denote it by ∂fj

∂xk
(p) and call it the kth partial derivative of fj at p.

Remark 9.4. As you can see in (9.1.6), that means that the partial derivative ∂fj

∂xk
(p)

is given by the derivative of the component function fj with respect to the variable xk.
All other variables are left constant. In the special case m = 1, we can write

∂f

∂xk
(p) = lim

h→0

f(p1, . . . , pk−1, pk + h, pk+1, . . . , pn) − f(p1, . . . , pn)
h

,

where p = [p1, . . . pn]T ∈ Ω. Compare Definition 5.1.
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Example 9.2. Consider f : R2 → R, f(x, y) = 2x2 + 3y, (x0, y0) ∈ R2. First,
we compute the partial derivative with respect to x:

Exercise 9.2. Calculate, using the definition, the partial derivative with respect to the
second variable of f : R2 → R, f(x, y) = 2x2 + 3y, (x0, y0) ∈ R2.
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Theorem 9.2.

Let Ω ⊆ Rd open, x0 ∈ Ω, and f : Ω → Rm. If f is differentiable at x0, then
all partial derivatives ∂fj

∂xk
(x0), j = 1, . . . ,m, k = 1, . . . , n exist and the total

derivative Df(x0) has the matrix representation

Df(x0) =


∂f1
∂x1

(x0) ∂f1
∂x2

(x0) . . . ∂f1
∂xn

(x0)
... ... . . .

...
∂fm
∂x1

(x0) ∂fm
∂x2

(x0) . . . ∂fm
∂xn

(x0)

 .

Remark 9.5. The converse of the last theorem is not true. The existence of all partial
derivatives does not imply that f is differentiable. In fact it does not even imply that f
is continuous. As an example consider

f(x, y) =


x2y

x4+y2 : x2 + y2 6= 0
0 : x = y = 0

.

To show that this function is not continuous, one has to choose curves other than
straight lines going through the origin. In fact, if you choose the coordinate-axis or a
line y = L(x) = mx and consider f(x,mx), you find that the limit is 0 as x tends
to 0. However, the "symmetry" of the function suggest to look at points (a, a2) which
lead to

f(a, a2) = a2 · a2

a4 + a4 = 1
2 .

Since we can choose (a, a2) arbitrarily close to (0, 0), we get the discontinuity of f at
(0, 0).
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9.2 Meaning of Differentiability in Rd

Reading 9. This section constitutes this week’s reading. Read the section carefully and
work out all the details, i.e. redo calculations, build your own examples, etc. pp. Use
GeoGebra or other programs to look at the examples yourself.
If you have questions, ask your tutors, talk to the staff in the MLSC or come to me.

If f : Ω → R, then the function graph
{
(x, f(x)) ∈ Rn+1 : x ∈ Rd

}
is a hypersurface in Rn+1. The word hypersurface means that the dimension of the
surface is one less than the surrounding space. For example, the sphere {(x, y, z) ∈
R3 : x2 +y2 +z2 = 1} is a 2-dimensional hypersurface inR3 as is any plane. InR3,
the hyperplanes are just called planes but in Rd, we distinguish the different planes. in
R4 we have the hyperplanes which are 4 − 1 = 3-dimensional, we have 2-dimensional
planes and 1-dimensional planes which we call lines.
The function f is then differentiable at x0 if there exists a tangent plane at x0, which
is a hyperplane in Rn+1 (since the graph lives there), which is the graph of

g(x) = f(x0) + L(x− x0).

The set of points V = {(x, Lx) : x ∈ Rd} is a sub-space of Rn+1 and the graph
of g is given by V + (x0, f(x0)). See Analytic Geometry/Linear Algebra. This can be
interpreted as small changes in x lead to only small changes in f(x) (in a linear way).
Consider

f(x, y) = −
[
(x− 1)2 + (y − 1)2] + 5

which is a function f : R2 → R. Thus, the graph {(x, f(x)) : x ∈ R2} ⊆ R3 is
a 2-dimensional (hyper)surface in R3.

https://www.geogebra.org/
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Figure 9.1: The function f with its tangent plane E(x, y) = 7 − 2x + 2y at
(x0, y0) = (2, 0).

For (x, y) close to (x0, y0) = (2, 0), one could then write

f(x, y) ≈ f(x0, y0) + L

x− x0

y − y0



= f(x0, y0) +
[

∂f
∂x(x0, y0) ∂f

∂y (x, y)
] x− x0

y − y0


= 7 − 2x+ 2y.
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For a function f : Ω → R, Ω ⊆ Rd open, one may say

f(x1 + ∆x1, . . . xn + ∆xn)

≈ f(x1, . . . , xn) +
[

∂f
∂x1

(x) ∂f
∂x2

(x) . . . ∂f
∂xn

(x)
]


∆x1

∆x2
...

∆xn


= f(x1, . . . , xn) +

n∑
i=1

∂f

∂xi
(x1, . . . , xn)∆xi.

if f is differentiable at x ∈ Ω. The xi + ∆xi are just another way of writing xi +hi,
which are the components of x+ h. Engineers and scientist like this notation and you
may see it here and there.
See also your lecture notes from Mathematical Methods II.

This finds applications in error considerations in physics and engineering as one can
calculate how much measuring errors propagate into final results. This way one can
determine how certain results are and what quantities need to be measures with greater
care. See also the Wikipedia article on Propagation of uncertainty or the Weppage
Uncertainty as Applied to Measurements and Calculations from John Denker. You can
also find some information

https://en.wikipedia.org/wiki/Propagation_of_uncertainty
http://www.av8n.com/physics/uncertainty.htm


Appendix

A
Prerequisites

A.1 Some notation used in this notes

The Greek alphabet. I assume that everyone is familiar with the Greek alphabet and
knows how to write the letters:

α alpha θ theta o omikron τ tau
β beta ϑ theta π pi υ upsilon
γ gamma γ gamma $ pi φ phi
δ delta κ kappa ρ rho ϕ phi
ε epsilon λ lambda % rho χ chi
ε epsilon µ mu σ sigma ψ psi
ζ zeta ν nu ς sigma ω omega
η eta ξ xi

Γ Gamma Λ Lambda Σ Sigma Ψ Psi
∆ Delta Ξ Xi Υ Upsilon Ω Omega
Θ Theta Π Pi Φ Phi

Table A.1: Greek Letters

246
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Some more symbols. I assume that you are familiar with the meaning of some sym-
bols described below.

Symbol Description
R real numbers
Z whole numbers, i.e. {. . . ,−2,−1, 0, 1, 2, . . . }
N natural numbers, i.e. {1, 2, 3, 4, . . . }
N0 natural numbers containing 0
Q rational numbers
C complex numbers

Table A.2: Notation of certain sets.

We have the following inclusions

N ⊂ N0 ⊂ Z ⊂ Q ⊂ R ⊂ C.

An important class of sets are subsets of the real numbers, called intervals. An interval
is a set of numbers characterized by their left and right "boundary". For example

[a, b] =
{
x ∈ R : a ≤ x ≤ b

}
which we read as the closed interval a, b. Closed means that it contains a and b. An
open interval does not contain the boundary points, i.e.

(a, b) =
{
x ∈ R : a < x < b

}
.

One can also consider the half-open cases

[a, b) =
{
x ∈ R : a ≤ x < b

}
and

(a, b] =
{
x ∈ R : a < x ≤ b

}
.
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We also denote the real numbers R by (−∞,+∞) at times. All numbers smaller
than a would be denoted by (−∞, a), all numbers smaller or equal to a by (−∞, a].
Similarly, one defines the sets of all numbers larger that or larger or equal to a given
number. If we have the situation that we describe x as having either the property x ≥ a

or x ≤ −a for a given a ≥ 0, then we can write
{
x ∈ R : x ≥ a or x ≤ a

}
which is the same as

x ∈ (−∞,−a] ∪ [a,+∞).
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A.1.1 Operations on sets

Sets are collections of elements described by some property P . The standard notation
for sets is

A =
{
x : x has propertyP

}
,

where one reads: A consists of all x such that x has property P .

Definition A.1 (Intersection/Union/Difference).
We denote by A ∩ B the intersection of A and B which means that A ∩ B

contains elements that are in A as well as in B. By A∪B, we denote the union of
the two sets A and B which means that A ∪ B contains elements that are either
in A or in B. With A \ B, we denote finally the difference of A and B that
means that A \B contains all elements in A that are not in B.

Remark A.1. Of course the intersection and union is not limited to a finite number. If
one has a family of sets {Ai : i ∈ I} indexed by a countable or uncountable set I one
can consider the sets ⋂i∈I Ai and ⋃i∈I Ai. For Example:

R =
⋃

n∈N
[−n, n], {0} =

⋂
n∈N

[
−1
n
,

1
n

]
.

Definition A.2 (Subset A ⊆ B).
Let A and B be sets. Then, we say that A is a sub-set of B, in symbols, A ⊆ B

iff
∀ x ∈ A ⇒ x ∈ B.

We write A ⊂ B if we want to signal that A is a proper subset of B, i.e. there
are elements in B that do not belong to A.
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Exercise A.1. Prove that for any set A, one has ∅ ⊆ A.

Definition A.3 (The set AB).
Let A and B be two sets. Then, we denote the set of all functions f : B → A as
AB .

Example A.1. The set RR are all functions from R to R. The set RN is the set
of all real sequences seen as functions from N to R. With the latter we can write
(an) ∈ RN and vice versa.

The last notion on operations on sets, we introduce

Definition A.4 (Cartesian product).
Let A and B be sets. Then, the Cartesian product of A and B, A× B, is the
set of all ordered pairs (a, b) with a ∈ A and b ∈ B, i.e.

A×B = {(a, b) : a ∈ A, b ∈ B} .

Example A.2. Let A = {1, 2, 3}, B = {3, 4}. Then

A×B =
{
(1, 3), (1, 4), (2, 3), (2, 4), (3, 3), (3, 4)

}
.

Exercise A.2. Draw a picture of [0, 1] × [0, 1].
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A.1.2 Some properties of sets

Definition A.5 (Bounded below/bounded above/bounded).
Let A ⊆ R.

1. If there exists l ∈ R such that l ≤ a for all a ∈ A, then we say that A is
bounded below and l is said to be a lower bound.

2. If there exists u ∈ R such that a ≤ u for all a ∈ A, then we say that A is
bounded above and u is said to be an upper bound.

3. We say that A is bounded iff A is bounded below and bounded above.

Definition A.6 (Supremum/Infimum).
Let A ⊆ R, A 6= ∅.

1. Let L ∈ R be such that

a) L ≤ a for all a ∈ A, and

b) for all lower bounds l of A, we have l ≤ L.

Then we call L the infimum of A.

2. Let L ∈ R be such that

a) a ≤ U for all a ∈ A, and

b) for all upper bounds u of A, we have U ≤ u.

Then we call U the supremum of A.

Remark A.2. As discussed in Analysis 1, we should write an infimum/a supremum
instead of the. Why are we justified in using the language above and in using sup(A)
and inf(A) to denote the supremum and infimum of A respectively.
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An important property of suprema/infima is

Lemma A.1.

Let A ⊆ R.

1. If A has a supremum, then for all ε > 0 there exists an a ∈ A such that

sup(A) − ε < a ≤ sup(A).

2. If A has an infimum, then for all ε > 0 there exists an a ∈ A such that

inf(A) ≤ a < inf(A) + ε.

Exercise A.3. Prove Lemma A.1.

From the completeness axiom, we have that every non-empty, bounded above set
has a supremum. As discussed in Analysis 1, this implies the existence of an infimum
for non-empty bounded below sets. For further information consult your Analysis 1 notes.

This year, you will attend the module Numbers (MAA245). In the last chapter, you will
introduce the real numbers by completing the rational numbers by Dedekind cuts. The
Dedekind cuts are exactly the suprema and infima that we, in out axiomatic system,
presuppose to exist.

You may also have a look into the original literature. Richard Dedekind wrote a very
readable account of the construction of the real numbers in the book Essays on the
Theory of Numbers. Especially Continuity of irrational numbers is worth a read.
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A.2 Some Linear Algebra (of real vector spaces)

We recall the following definition from Linear Algebra. If you do not remember it very
clearly, please consult your Linear Algebra notes too.

Definition A.7 (Vector space).
A real vector space is a set V together with two operations + : V × V → V

satisfying (A1) to (A4) and · : R × V → V satisfying (A5) to (A8). The
conditions (A1) to (A4) are

(A1) There exists an element 0 ∈ V such that v + 0 = v for all v ∈ V .

(A2) For every v ∈ V there exists an element −v ∈ V such that v+(−v) =
0.

(A3) For all u, v, w ∈ V holds u+ (v + w) = (u+ v) + w.

(A4) For all u, v ∈ V holds u+ v = v + u.

The conditions (A5) to (A8) are

(A5) For all v ∈ V holds 1· = v, where 1 is the multiplicative identity of R.

(A5) For all v ∈ V and α, β ∈ R holds α(β · v) = (αβ) · v.

(A5) For all u, v ∈ V and α ∈ R holds α · (u+ v) = α · u+ α · v.

(A5) For all v ∈ V and α, β ∈ R holds (α + β) · v = α · v + β · v.

If we want to emphasise that V is a real vector space, we write (V,R) and if we
would like to emphasise the operations as well, we write (V,R,+, ·).
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Exercise A.4. Convince yourself that (Rn,R) with the addition of vectors

+ : Rn ×Rn → Rn,([
x1, x2 . . . , xn

]T
,
[
y1, y2 . . . , yn

]T)
7→

[
x1 + y1, x2 + y2 . . . , xn + yn

]T
and multiplication with a scalar

· : R×Rn → Rn(
λ,
[
x1, x2 . . . , xn

]T)
7→

[
λx1, λx2 . . . , λxn

]T
is a real vector space in the sense of Definition A.7. Be reminded that

x1
...
xn

 =
[
x1 . . . xn

]T
.

Exercise A.5. Convince yourself that (RN,R) (see Definition A.3) with + : RN ×RN → RN,(
(an), (bn)

)
7→ (an + bn)

and  · : R×RN → RN(
λ, (an)

)
7→ (λan)

is a real vector space in the sense of Definition A.7. Thus, sequences can be seen as
points in a vector space and we can try to apply intuitive geometric reasoning to this
setting. See the theorem about arithmetical rules for convergent sequences in Analysis
1 and the subsequent remarks.

Remark A.3. The space (RN,R) in the example above is a neat example of an infinite
dimensional vector space. For further details on dimension compare your Linear Algebra
and Analysis 1 notes.
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We introduce the important notion of the scalar product. In school you probably heard
about it as dot product of vectors. This might also be the name that is use in Mathe-
matical Methods.

Definition A.8 (Scalar product (inner product)).
Let V be a real vector space. A function 〈·, ·〉 : V × V → R will be called a
scalar product if it satisfies the following conditions:

(i) For all v ∈ Rn, we have 〈v, v〉 ≥ 0 and 〈v, v〉 = 0 iff v = 0. (Positive
definiteness)

(ii) For all u, v ∈ V , we have 〈u, v〉 = 〈v, u〉. (Symmetry)

(iii) For all u, v, and w ∈ V , and α, β ∈ R we have

〈u, αv + βw〉 = α〈u, v〉 + β〈u, v〉. (Linearity)

Remark A.4. In the above definition, tanking property (ii) and (iii) together, we
obtain: for all u, v, and w ∈ V , we have 〈αu + βv, w〉 = α〈u,w〉 + β〈v, w〉 as
well.

Exercise A.6. Prove the assertion made in Remark A.4.
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Example A.3. The most important example in our context is

〈x, y〉 =
n∑

i=1
xiyi. (A.2.1)

This scalar product induces the Euclid length of a vector in Rn:
√

〈x, x〉 =
√√√√ n∑

i=1
|xi|2 = ‖x‖2.

This scalar product is, especially in applied mathematics, often denoted by a thick dot
and called dot-product: 〈x, y〉 = x · y = xTy, where the last multiplication is a
matrix multiplication. Since (A.2.1) is not the only possibility, we introduced 〈·, ·〉 to
symbolise a scalar product.

Remark A.5. There are many scalar products that one can establish on Rn. An
example for n = 2 is

〈x, y〉 = x1y1 + 2x2y2 − (x1y2 + y1x2)

for all x, y ∈ R2. Use the above definition to compute the scalar product 〈x, y〉 for

x =
[
1, 2

]T
, y =

[
−3, 1

]T
.

However, in this module, only the standard scalar product given by (A.2.1) is of impor-
tance on Rn.

Proposition A.1 (Scalar products induce norms).
Let V be a real vector space with scalar product 〈· , ·〉. Then, the scalar product
induces a norm on V by

‖x‖ =
√

〈x, x〉.

Exercise A.7. Use the definition of a scalar product to prove that ‖x‖ =
√

〈x, x〉
defines a norm as stated in the last proposition. For the definition of a norm, see 1.8.

http://demonstrations.wolfram.com/DotProduct/
https://en.wikipedia.org/wiki/Matrix_multiplication
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Remark A.6. It should be remarked that not all norms on Rn (or any vector space)
are induced by a scalar product. For example, there is no scalar product on Rn that
induces any of the ‖ · ‖p norms for p 6= 2. For the definition of the latter see Example
1.3.

Remark A.7. Scalar products satisfy a very important property for Analysis, the so-
called Cauchy-Schwarz inequality. See Theorem A.10. This inequality says that

|〈v, w〉| ≤
√

〈v, v〉
√

〈w,w〉.

The Cauchy-Schwarz inequality implies

−1 ≤ 〈v, w〉
‖v‖2‖w‖2

≤ 1

for v, w ∈ Rn \ {0}. This allows us to introduce angles ∠(v, w) between vectors v,
w by

cos(∠(v, w)) = 〈v, w〉
‖v‖2‖w‖2

.
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A.2.1 Basis and dimension

Definition A.9 (Linear combination).
Let V be a real vector space and {v1, . . . , vk} ⊆ V we call any combination of
the type

α1v1 + . . . αkvk =
k∑

i=1
αivi,

where the αi ∈ R, i = 1, . . . , k a linear combination of v1, . . . , vk.

Definition A.10 (Linear dependence).
A set {v1, . . . , vk} ⊆ V is called linearly dependent if it is possible to write

0 =
k∑

i=1
αivi, (A.2.2)

where not all αi are equal to zero. If (A.2.2) is only possible α1 = α2 = · · · =
αk = 0, the set is called linearly independent.

Definition A.11 (Maximal independent set).
A set B ⊆ V is a maximal independent set if B ∪ {v}, for every v ∈ V \B
is a linearly dependent set.

Definition A.12 (Dimension).
Let V be a vector space and B ⊆ V be a maximally independent set. Then, the
dimension of V , is defined to be ](B), in symbols: dim(V ) = ](B).a

aThe function ](B) returns the number of elements in B.

Definition A.13 (Basis).
Let V be a real vector vector space. A set B ⊆ V is called a basis if it is a
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maximally linearly independent set.

Definition A.14 (Span/Linear hull).
Let V be a real vector space and U ⊆ V be a subset. Then, the we denote
by span(U) the set of all finite linear combinations of elements in U . We say
span(U) is the span of U or the linear hull of U .

Proposition A.2.

Let V be a real vector space and B ⊆ V be a basis. Then span(B) = V .

Example A.4 (Canonical/standard basis). We define

δij =

 1 : i = j

0 : i 6= j
.

This function is refereed to as Kronecker-δ. We then set

ei =



δi1

δi2
...
δin


, i ∈ {1, . . . n}.

Then, the set {ei : ni ∈ {1, . . . , n}} is a basis of Rn and usually referred to as the
standard basis or canonical basis of Rn. Since it is a basis, we have for all x ∈ Rn

that

x =


x1
...
xn

 =
n∑

i=1
xiei.
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A.2.2 Linear maps

Definition A.15 (Linear map).
Let U and V be two real vector spaces. Then, a map L : U → V is called a
linear map if and only if

(i) L(λu) = λL(u) for all λ ∈ R and u ∈ U , and

(ii) L(u+ v) = L(u) + L(v) for all u, v ∈ U .

Remark A.8. Following convention, we will usually write Lu instead of L(u) to denote
the image of u under L if L is a linear map. If we apply the map to a linear combination,
we will use brackets to avoid ambiguities.



APPENDIX A. PREREQUISITES 261

A.3 Sequences

A sequence (an)n∈N is an element ofRN, i.e. a map fromN toR. We can also think
about a sequence as an infinite list of real numbers (indexed by the natural numbers):

(an)n∈N = (a1, a2, . . . , an, . . .).

We denote sequences (an)n∈N also by (an) in short. For further information, see your
Analysis 1 Lecture Notes.

Definition A.16 (Convergence of sequences).
A sequence (an) ⊆ R converges iff there exists an a ∈ R such that any ε > 0
there exists an index n0 ∈ N such that |an − a| < ε for all n ≥ n0. The value
a is called the limit of (an). In symbols, we write

lim
n→+∞

an = a

or
an → a as n → +∞,

respectively
(an) → a.

Proposition A.3 (Uniqueness of limits).
Let (an) ⊆ R be convergent. Then the limit is unique.

Exercise A.8. Prove Proposition A.3. (Hint: Assume there are two different limits and
show that they must be equal.)
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Exercise A.9. Find a sequence that has three sub-sequences that converge all to dif-
ferent limits. (Hint: it is not always necessary to think in formulas.)

Definition A.17 (Sub-sequence).
Let (an) ⊆ R and (nk) ⊆ N be a strictly increasing sequence. Then, (ank

) is a
subsequence of (an). We denote that by (ank

) ⊆ (an).

Proposition A.4 (Convergence of sub-sequences).
Let (an) ⊆ R be a convergent sequence. Then, all sub-sequences converge every
sub-sequence converges to the same limit.

Proof.

Let (an) ⊆ R be convergent, i.e. there exists an a ∈ R such that

∀ε > 0 ∃n0 ∈ N : ∀n ≥ n0, |an − a| < ε . (A.3.1)

Let now (ank
) ⊆ (an) be a subsequence of (an)n∈N.

Since nk ≥ k, we have if k ≥ n0 that nk ≥ n0.
Thus, from (A.3.1), we get |ank

− a| < ε for k ≥ n0.
Thus, ank

→ a as k → +∞.
This concludes the proof.

The converse of the last proposition is also true and yields

Theorem A.1.

A sequence (an) ⊆ R is convergent iff every subsequence converges to the same
limit.
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We further introduce

Definition A.18 (Monotonically decreasing/increasing).
Let (an) ⊆ R.

1. If an+1 ≥ an for all n ∈ N, we say that (an) is (monotonically) increasing.
If an+1 > an for all n ∈ N, we say that (an) is strictly (monotonically)
increasing.

2. If an+1 ≤ an for all n ∈ N, we say that (an) is (monotonically) decreasing.
If an+1 < an for all n ∈ N, we say that (an) is strictly (monotonically)
decreasing.

Definition A.19 (Monotone sequence).
We say a sequence is monotone if it is increasing or decreasing.

Theorem A.2.

Every sequence (an) ⊆ R has a monotone sub-sequence.

Exercise A.10. Prove Theorem A.2. If you do not remember how to do this, revise the
proof in your Analysis 1 notes.

We give

Definition A.20 (Boundedness of sequences).
A sequence (an) ⊆ R is bounded if and only if there exits a C > 0 such that

|an| ≤ C ∀n ≥ 0.
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Proposition A.5 (Boundedness of convergent sequences).
Let (an) ⊆ R be convergent. Then, (an) is bounded.

Proof.

Let a ∈ R be the limit of (an) and fix ε = 1.
Then there exists n0 ∈ N such that |am − a| < 1 for all n ≥ n0.
By the reverse triangle inequality, we get |an| ≤ 1 + |a| for all n ≥ n0.
Then, a bound for the sequence (an) is given by

M := max
{
|a1|, . . . , |an0−1|, 1 + |a|

}
,

i.e. |an| ≤ M for all n ∈ N.

Exercise A.11. Give examples and counterexamples for the converse of Proposition
A.5.

Theorem A.3 (Arithmetic properties of sequences).
Let (an) ⊆ R and (bn) ⊆ R be sequences with an → a and bn → b as
n → +∞. Then, one has

(i) lim
n→+∞

(
an + bn

)
= a+ b,

(ii) lim
n→+∞

anbn = ab, and

(iii) lim
n→+∞

an

bn
= a

b
if bn 6= 0 for all n ∈ N and b 6= 0.

Proof. See your notes from Analysis 1 or regard it as an exercise.
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Theorem A.4 (Monotone convergence).
Every bounded and monotone sequence is convergent.

Exercise A.12. Prove Theorem A.4, give examples, and give counterexamples for the
converse.

Theorem A.5 (Bolzano–Weierstrass).
Every bounded sequence (an) ⊆ R has a convergent subsequence.

Proof. See your notes from Analysis 1. We will prove a more general version later this
semester. Can you recall the ingredients of the proof before you look the details up?

Definition A.21 (Cauchy-sequence/Fundamental sequence).
Let (an) ⊆ R be a sequence. We say that (an) is a Cauchy-sequence (funda-
mental sequence) if and only if for any ε > 0 there exists an index n0 such that
|an − am| < ε for all m, n ≥ n0. With qualifiers this reads as

∀ε > 0 ∃n0 ∈ N : ∀m,n ≥ n0 ⇒ |an − am| < ε

Exercise A.13. Prove that every sub-sequence of a Cauchy sequence is a Cauchy se-
quence.

Proposition A.6 (Boundedness of Cauchy sequences).
Let (an) ⊆ R be a Cauchy sequence. Then, (an)n∈N is bounded.
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Exercise A.14. Prove Proposition A.6, give examples and counterexamples for the
converse.

Proposition A.7.

Let (an) ⊆ R be a convergent sequence with limit a. Then (an) ⊆ R is a
Cauchy sequence.

Exercise A.15. Before reading the proof, draw a picture of the situation and see whether
you can reproduce the proof yourself.

Proof of Proposition A.7.

Let (an) be a sequence with an → a, n → +∞.
Let ε > 0 and n0 ∈ N such that |an − a| < ε

2 .
Then, we get for m, n ≥ n0 that

|an −am| = |an −a+a−am| ≤ |an −a|+ |a−am| < ε

2 + ε

2 < ε.

This concludes the proof.

We also have a converse to Proposition A.7.

Proposition A.8.

Let (an) ⊆ R be a Cauchy sequence. Then there exists an a ∈ R such that
an → a as n → +∞.

Proof.

From Theorem A.6, we know that (an) is bounded.
From Bolzano–Weierstrass we know that there exist a convergent subse-
quence (ank

) ⊆ (an).
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Now, we show that (an) has the same limit. Let a be the limit of the
convergent subsequence (ank

).
Let ε > 0 and choose k1 ∈ N such that |ank

− a| < ε
2 for all k ≥ k1.

Choose k2 ∈ N such that |ank
− am| < ε

2 for all m, k ≥ k2.
Let k0 = max{k1, k2}. Then

|am−a| = |am−ank
+ank

−a| ≤ |am−ank
|+|ank

−a| < ε

2+ε2 < ε.

this concludes the proof.

Thus, taking the last two propositions together, we have

Theorem A.6 (Cauchy criterion for convergence).
Let (an) ∈ R be s sequence. There exists an a ∈ R such that an → a as
n → +∞ if and only if (an)n∈N ∈ R is a Cauchy sequence.

Remark A.9. Theorem A.6 is only valid because we are in R. In general, as you can
learn in the module Metric Spaces, Cauchy sequences do not necessarily have limits. If
one considers for example a sequence of rational numbers then there are some, e.g.

xn = 1
2

(
xn−1 + 2

xn−1

)
, n ≥ 1

with x0 = 1, which converge to irrational numbers. Here, xn →
√

2, n → +∞.
Thus, the limit exists only if the sequence is considered to be in R. This property is
called completeness.
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Theorem A.7 (Limits respect inequalities).
Let (an) ⊆ R be a sequence and suppose that an ≤ C for all n ∈ N . Then, if
limn→+∞ an exists, it holds

lim
n→∞ an ≤ C.

Remark A.10. The ≤ in Theorem A.7 can not be replaced by < as the example
an = 1

n shows fo which 0 < an but the limit is equal to 0.

Exercise A.16. Prove Theorem A.7.

A.4 Series

Let (an)n∈N ⊆ R be a sequence. The, the infinite sum
+∞∑
n=0

an

is called a series. We call the finite sum

SN =
N∑

n=0
an

the N th partial sum of
+∞∑
n=0

an.

Definition A.22 (Convergence of series).

We say that
+∞∑
n=0

an converges iff its sequence of partial sums (SN)N∈N0 con-

verges. We say that
+∞∑
n=0

an is absolutely convergent if
+∞∑
n=0

|an| is convergent.
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Definition A.23 (Divergent series).

A series
+∞∑
n=0

an is said divergent iff it is not convergent.

Since we have Theorem A.6, we can conclude

Corollary A.1.

The series
+∞∑
n=0

an converges iff the sequence of its partial sums (SN) is a Cauchy
sequence.

Remark A.11. Writing Corollary A.1 in other words: The series
+∞∑
n=0

an converges iff

for any ε > 0 there exists an index N0 such that∣∣∣∣∣∣
n∑

i=m+1
ai

∣∣∣∣∣∣ < ε (A.4.1)

for all n ≥ m ≥ N0. Equivalently (prove that), we can ask∣∣∣∣∣∣
n∑

i=m

ai

∣∣∣∣∣∣ < ε

in place of (A.4.1).

An important though quite obvious property is stated in

Proposition A.9.

Let
+∞∑
n=0

an be a convergent series. Then (an) → 0.

Proof.

Since
+∞∑
n=0

an is convergent there exists an S such that

lim
N→+∞

SN = S.
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Since an = Sn − Sn−1, using Theorem A.3, we obtain

lim
n→+∞

an = lim
n→+∞

(
Sn − Sn−1

)
= lim

n→+∞
Sn − lim

n→+∞
Sn−1 = 0.

This concludes the proof.

Remark A.12. One can not say much more than (an) → 0 for a convergent series. If
the summands satisfy an ≥ an+1 > 0, then we can show that (nan) → 0.

We have

Theorem A.8 (Absolute convergence ⇒ convergence).

If
+∞∑
n=0

an converges absolutely, then it converges.

A final result we will need from Analysis 1 is

Theorem A.9 (Comparison theorem).

Let
+∞∑
n=1

an,
+∞∑
n=1

bn two series such that 0 ≤ an ≤ bn for all n ∈ N0. Then,

1. if
+∞∑
n=1

bn converges, then
+∞∑
n=1

an converges.

2. if
+∞∑
n=1

an diverges, then
+∞∑
n=1

bn diverges.

In case 1, we then have
+∞∑
n=1

an ≤
+∞∑
n=1

bn.

Exercise A.17. Prove Theorem A.9.
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A.5 Elementary properties of functions of one

variable

Let us recall what a function is. First, we have to define what a relation is and then we
will use that to give a precise definition of functions.

Definition A.24 (Relation).
A relation on a set A is a sub-set ρ ⊆ A × A. We abbreviate the statement
(x, y) ∈ ρ by xρy.

Example A.5 (The relation > on Z.).
Consider the set ρ =

{
(x, y) ∈ Z × Z : x − y ∈ N

}
⊆ Z × Z. This is the >

relation on the set A = Z. It is infinite because there are infinitely many ways to have
x > y where x and y are integers.

With relations, we can define what a function is.

Definition A.25 (Function).
Let A and B be sets. Then, a function f from A to B, in symbols f : A → B is
a relation f ⊆ A × B from A to B satisfying the property that for each a ∈ A

the relation f contains exactly one ordered pair of the form (a, b). The statement
(a, b) ∈ f is abbreviated by f(a) = b.

Exercise A.18. Interpret the definition of function graphically. Draw functions and
non-functions to understand what for each a ∈ A the relation f contains exactly one
ordered pair of the form (a, b) means.

We can add, subtract, multiply, and divide functions by pointwise definition. Another
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important operation is the composition: let f : A → B and g : B → C be functions.
Then, g ◦ f(x) = g(f(x)) is a function from A to C . Unless C is contained in A,
the function f ◦ g is not defined.

Example A.6. Let f(x) = ex and g(x) = x2 + 1. Both functions are defined on
R. We can consider

f ◦ g(x) = f(g(x)) = ex2+1,

g ◦ f(x) = g(f(x)) = e2x + 1.

That also shows that, in general, f ◦ g is not equal to g ◦ f should both be definable.

A.5.1 Restrictions of functions

Let A and B be sets and f : A → B be a function. Now let C ⊆ A. We want to
define the restriction of the function f to a subset C of its domain. By that we mean
the function g : C → B with x 7→ f(x). We denote g by f

∣∣∣∣
C

which we speak as f
restricted to C .

A.5.2 Monotonic functions

Definition A.26 (Strictly monotone functions).
Let I ⊆ R be an interval and f : I → R. Then, f is called

• strictly increasing if f(x) > f(y) for all x > y ∈ I , and

• strictly decreasing if f(x) < f(y) for all x > y ∈ I .

If the strict inequalities are replaced by ≥ and ≤, we speak of non-decreasing and
non-increasing functions respectively.
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Remark A.13. With a slight abuse of words, we say (monotonically) increasing when
we mean non-decreasing, i.e. f(x) ≤ f(y) if x ≤ y and (monotonically) decreasing
when we mean non-increasing, i.e. f(x) ≤ f(y) if x ≥ y. Compare that to our use
of language in sequences in Analysis 1.

Remark A.14. We say a function is monotone if it is either monotonously increasing or
decreasing on it domain. Which one it is depends on the function. For some theorems
it is only important that the function is either increasing or decreasing but not which
one it is. For example, having a continuous function f which is strictly monotone, is
invertible, f−1 exists.

A.5.3 Odd and even functions

Definition A.27 (Odd/even functions).
Let f : R → R. Then, we say that

• the function f is odd iff f(−x) = −f(x) for all x ∈ R, and

• the function f is said to be even iff f(−x) = f(x) for all x ∈ R.

Remark A.15. Odd/even functions can be defined on intervals too but one needs to
take some care with respect to the symmetry property.

Remark A.16. It is easy to see that every function f : R → R can be written as the
sum of an odd function fodd and an even function feven, where

fodd(x) = 1
2(f(x) − f(−x)),

feven(x) = 1
2(f(x) + f(−x)).
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Examples are sinh(x) and cosh(x) which are odd and even part of ex.

A.5.4 Convex and concave functions

Definition A.28 (Convex/concave function).
Let f : R → R be a function. We say that f is convex on the interval [a, b] iff

f(λx+ (1 − λ)y) ≤ λf(x) + (1 − λ)f(y)

for all x, y ∈ [a, b] and all λ ∈ [0, 1]. A function f is called concave iff −f is
convex.

Remark A.17. In school you might have heard about convex up/down of concave
up/down. There names are not used in the mathematical literature above school level
and should be dropped.

Exercise A.19. Interpret the definition of convex/concave graphically.
Consider f(x) = x2 and g(x) =

√
x and say on which intervals they are concave/con-

vex if on any.
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Proposition A.10 (Jensen’s inequalitya).
Let f : R → R be convex. Suppose that x1, . . . , xn ∈ R and λ1, . . . , λn ∈
[0,+∞]) with

n∑
i=1

λi = 1. Then,

f(λ1x1 + · · · + λnxn) ≤ λ1f(x1) + · · · + λnf(xn)

holds.
aNamed after the Danish mathematician Johan Jensen (1859–1925).

A.6 Elementary inequalities

Inequalities are one of the most important tools in Analysis. The ones of this and the
next section must be in you head at all times.

• Let a, b be non-negative real numbers. Then we have the trivial estimates
2 min{a, b} ≤ a+ b ≤ 2 max{a, b}.

• Let a ≥ 1, then 1
a ≤ 1.

• Let a, b be positive real numbers. Then, 1
a+b ≤ 1

a and 1
a+b ≤ 1

b .

• Let a, b, and c be non-negative real numbers. Then a + b − c ≤ a + b and
a− c ≤ a+ b− c and b− c ≤ a+ b− c hold true. If b− c > 0, one gets
also a ≤ a+ b− c and if a− c > 0, one gets b ≤ a+ b− c.

• Let a, b be two real numbers. Then

|a+ b| ≤ |a| + |b| (A.6.1)

holds. This is called triangle inequality.

• Let a, b be two real numbers. Then

||a| − |b|| ≤ |a− b|

holds. This is called the reverse triangle inequality.
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Example A.7. We need these rather obvious inequalities often in the analysis of se-
quences. For example, there exists an n0 ∈ N such that

∀n ≥ n0,
1

n2 + n
≤ 1
n2 .

If we have a sequences as 1
n2−n

the situation is less obvious. However, since there exists
a n0 such that n2

2 − n ≥ 1 for all n ≥ n0, we can estimate

∀n ≥ n0,
1

n2 − n
= 1

n2
2 + n2

2 − n
≤ 1
n2 .

Exercise A.20. Analise the convergence of the series

+∞∑
i=1

n

n4 − n3 + 2n2 − n+ 1

by estimating it against the convergent series
+∞∑
n=1

1
n3 .

Exercise A.21. Show that for any x ∈ Rn, one has

|x1| + · · · + |xn| ≤ n max
i=1,...,n

|xi|.

Interpret this in the light of Example 1.3.1

1See Theorem 1.2.
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A.7 Cauchy–Schwarz, Minkowski, and Hölder

The inequalities in this chapter are immensely important and need to be memorized.

Theorem A.10 (Cauchy–Schwarz inequality).
Let a ∈ Rn and b ∈ Rn. Then

n∑
i=1

aibi ≤
 n∑

i=1
|ai|2

1
2
 n∑

i=1
|bi|2

1
2

.

In shorter notationa, we can write

|〈a , b〉| ≤ ‖a‖2‖b‖2.
aSee also Definition A.8 in Section A.2.

Proof. The proof of this important inequality is on the problem sheet for you to find.
The solutions of the sheet contain two different proofs an here I will present another one
that one student of the year 2016/17 found. To keep the notation simpler, we adopt for
a moment the applied mathematicians habit of denoting ‖x‖2 by |x|.

Without loss of generality, we can assume that a and b are in Rn \ {0}.
Then define v = |a|b− |b|a.
Since we have 〈v, v〉 ≥ 0, we compute

〈v, v〉 = 〈|a|b− |b|a, |a|b− |b|a〉

= 〈|a|b, |a|b〉 + 〈|a|b,−|b|a〉 + 〈−|b|a, |a|b〉 + 〈−|b|a,−|b|a〉

= 2|a|2|b|2 − 2|a||b|〈a, b〉 ≥ 0.

Thus, we obtain 2|a|2|b|2 ≥ 2|a||b|〈a, b〉.
Dividing by 2|a||b|, we get the Cauchy–Schwarz inequality.
This concludes the proof.

Exercise A.22. Work out what properties of the scalar product have been used where
in the proof above. See Definition A.8).
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Exercise A.23. Try to understand the geometry of the proof above. Use your knowledge
from Mathematical Methods II. Show that it can also be proven using the identity
‖x‖2

2 = 〈x, x〉 on the vector v = x
‖x‖2

− y
‖y‖2

.

Exercise A.24. As another exercise on the manipulation of scalar products try to show

〈x, y〉 ≤ ‖x‖2
2

2 + ‖y‖2
2

2
by using v = x− y.
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The next theorem proves that ‖ · ‖p, p ∈ [1,+∞] satisfies the triangle inequality. See
also Definition 1.8 and Example 1.3.

Theorem A.11 (Minkowski inequality).
Suppose p ∈ [1,+∞) and let a ∈ Rn and b ∈ Rn. Then

 n∑
i=1

|ai + bi|p
1

p

≤
 n∑

i=1
|ai|p

1
p

+
 n∑

i=1
|bi|p

1
p

.

In shorter notation, we may write

‖a+ b‖p ≤ ‖a‖p + ‖b‖p,

where we used ‖ · ‖p as defined in Example 1.3. With the appropriate changes, the
inequality remains true for p = ∞, i.e.

max
i=1,...,n

|ai + bi| ≤ max
i=1,...,n

|ai| + max
i=1,...,n

|bi|,

‖a+ b‖∞ ≤ ‖a‖∞ + ‖b‖∞.

Remark A.18. The case p = ∞ is very easy to prove. It only relies on the triangle
inequality for real numbers (see (A.6.1)): |ai + bi| ≤ |ai| + |bi| for all i = 1, . . . , n
implies

max
i=1,...,n

|ai + bi| ≤ max
i=1,...,n

|ai| + max
i=1,...,n

|bi|.
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The final inequality stated in this section is

Theorem A.12.

Suppose that 1 ≤ p, q ≤ ∞ with p−1 + q−1 = 1. Then, for a, b ∈ Rn, we
have

n∑
i=1

|aibi| ≤
 n∑

i=1
|ai|p

1
p
 n∑

i=1
|bi|q

1
q

.

Shorter, we can write
n∑

i=1
|aibi| ≤ ‖a‖p‖b‖q.

Exercise A.25. Show that the Cauchy–Schwarz inequality is a special case of the Hölder
inequality.
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