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Chapter

1
Ordinary Differential Equations

1.1 What is an ODE?

An ordinary differential equation is an equation between an unknown function and its

derivatives (of first and higher order), i.e. its solution will be a function and not just a

number as for quadratic equations for example.

Let us start with some physical examples:

To start, we fix some notation

An example for a higher order ordinary differential equation is Newton’s law:

whereF is the force on the particle.

1
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A massm is attached to an elastic spring of force constant k, the other end of which

is attached to a fixed point and the spring is supposed to obey Hooke’s law with spring

constant k.

Then the force

gives the equation of motion

which is a differential equation for the function x = x(t).

1.1.1 Vocabulary

Let us introduce some terms that we will use frequently. We do so by considering the

specific example

m
d2x

dt2
= −kx. (1.1.1)

1. The unknown function x is called the dependent variable and t is called the in-

dependent variable.

2. Equation (1.1.1) is called an ordinary differential equation (ODE) because the un-

known function depends only on one independent variable.

3. The highest order of derivatives involved in the ODE is called the order of the ODE.

Equation (1.1.1) is of second order.
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4. The ODE (1.1.1) is linear because the dependent variable and its derivatives occur

only linearly (i.e. in first power).

5. The ODE (1.1.1) has constant coefficients since neitherm nor k are themselves

functions of t. If they were, wewould say the equation has variable coefficients1.

6. A given functionx = x(t) is a solutionof theODE (1.1.1) if the equation is satisfied

for all t (possibly in a specified domain).

1.1.2 Types of problems for ODEs

Initial value problems (IVPs)

Claim: The function

x(t) = A cos

(√
k

m
t

)
+B sin

(√
k

m
t

)
(1.1.2)

is a solution of

m
d2x

dt2
= −kx (1.1.3)

for arbitrary constantsA,B ∈ R.
Check:

1One then also says that the equation has non-constant coefficients.
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We see that equation (1.1.3) has infinitelymany solutions. This is a general phenomenon.

As you recall from integration of functions, we get a free constant when we integrate,

i.e. the integral of a function is not just a function but a set of functions:∫
fdx = F + C

withF ′ = f .

To solve differential equations, we have to integrate, as we will see later, essentially

order of the ODE times which will give us the number of free constants involved in the

solution. Since the order of (1.1.1) is two, we have two free constants, in this case called

A andB .

How could we fix this? Let us think about a very simple version first. Consider f(t) =

sin(t) + 3. Then,

FC(t) =

∫
f ′(t)dt =

∫
cos(t)dt = sin(t) + C.

What do we need to know to get f back fromFC?

Thus, to determineA andB in (1.1.2), we need to specify the initial conditions, i.e. the

initial state of the system. Thus, in general, to not get infinitely many solutions, we

consider the following problem
Find a solution to the ODE x = x(t)

that satisfies x(0) = L

and dx
dt (0) = 0.

(IVP)

These types of problems are called initial value problem (IVP).
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Let us calculate the particular values ofA andB :

Thus, the (IVP) has the unique solution

Boundary value problems (BVPs)

Now let us consider a different type of problem. A string of length L is vibrating with

angular frequencyω.

The shape of the string, described by y = y(x) at any given time satisfies the ODE

c2
d2y

dx2
= −ω2y. (1.1.4)

Find the shape under the condition that the string is clamped at the ends, i.e.
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In short, we have 
Find a solution to the ODE y = y(x)

that satisfies

and

(BVP)

which is called a boundary value problem (BVP).

The equation (1.1.4) is again a second order equation, it is linear and has constant coef-

ficients. The dependent variable is y and the independent variable is x. We also realise

that (1.1.4) is the same as (1.1.3) just with different variable names. Hence, we know the

general solution:

For the constantsA andB , we obtain
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Concluding observations

•

• An IVP has ‘always’ a unique solution if the right number of initial conditions are

given.

• A BVP does not always have a solution, it imposes a constraint on the ODE.

1.1.3 Solutions in implicit form

Before we get to this point, let us remind ourselves of some rules of differentiation: Let

y = y(x) be a (sufficiently smooth) arbitrary function and find formulas for

d

dx

(
x2y(x)

)
and

d

dx

(
x2 sin

(
y(x)

))
.
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Now, the equation

defines a function y = y(x). (Even though we can not find an explicit formula for it.)

This is related to the LambertW -function. If you are interested, you can have a look at

the corresponding Wikipedia article and the resources cited therein.

Show that this function satisfies the ODE

dy

dx
=

2x

1 + y
e−y. (1.1.5)

Answer:

https://en.wikipedia.org/wiki/Lambert_W_function
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The general solution of the ODE (1.1.5) should contain an arbitrary constant. Indeed,

defines a function y = y(x) for anyC ∈ R. The equation

yey − x2 = C

gives the solution of (1.1.5) in implicit form, i.e. in a form F (y, x) = 0 for some F

instead of y = g(x) for some g.

Exercise 1.1. Show that the function y which satisfies the equation

yey − x2 = C

satisfies
dy

dx
=

2x

1 + y
e−y.
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1.2 Separable ODE

1.2.1 Examples

Example 1.1.

Consider a particle on the number line with position x(t) and suppose that its velocity

dx

dt
is given by

dx

dt
=

3

(1 + t)2
.

Find the particles position x = x(t) at a time t > 0 if we suppose that x(0) = 0.

Now, we fix the constant:

Remark 1.1. Ordinary integration is a special case of solving an ODE, where the right

hand side does not depend on the function that we seek. The integration constant pro-

duces the free constant we need in the general solution.
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Example 1.2.

A body moving slowly through a liquid experiences a friction force that is proportional

to its velocity.

a) A body of mass m is moving through the liquid horizontally. Its initial velocity is

v(0) = v0. Find its velocity as a function of time.

We may be able to guess a solution to this equation:

We could also rewrite the above differential equation as
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A different way of rewriting the same calculation starts with

dv

dt
= − α

m
v

transformed to
dv

v
= − α

m
dt (separation of variables)

which leads with integration to∫
1

v
dv =

∫
− α

m
dt.

After the evaluation of the integrals, we obtain

ln(|v|) = − α

m
t+ C.

Finally, we fix the constant:

b) The same body is falling vertically through the liquid. Find its velocity as a function

of time if the initial velocity v(0) is v0. We have to solve

m
d2x

dt2
= −α

dx

dt
+mg

or
dv

dt
= − α

m

(
v − mg

α

)
.
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Now we determine the constant:

v0 = v(0) =
mg

α
+ C

which leads to

C = v0 −
mg

α
.

Thus, we get

v(t) =
mg

α
+
(
v0 −

mg

α

)
e−

α
m t

Discussion:

• For long time (t → +∞), we have that

at this velocity,αv = mg, i.e. friction and the gravitation forces cancel.

• The asymptotic velocity
mg

α
is approached exponentially with time scale

m

α
.
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Example 1.3.

Find the general solution of the ODE

dy

dx
=

1 + x

2− y
.
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1.2.2 Summary

A differential equation of the form{
dy
dt = f(y)g(t)

y(t0) = y0
(1.2.1)

is called separable. If we set

F (y) =

∫ y

y0

1

f(s)
ds

then, the solution of (1.2.1) is given by

y(t) = F−1

(∫ t

t0

g(τ)dτ

)
. (1.2.2)

Exercise 1.2. Use the rules of differentiation
2
to prove that (1.2.2) is a solution of (1.2.1).

Recall, how one calculates integrals of the type

d

dt

∫ b(t)

a(t)
f(t, τ)dτ.

Algorithm in Leibniz’s notion

Step 1. Rewrite the ODE
dy

dt
= f(y)g(t)

in separated form, i.e.
dy

f(y)
= g(t)dt.

Step 2. Integrate both sides with respect to the respective variable. Do not forget the

integration constant. We only need one!

Step 3. Rearrange for y in terms of t. (That is formula (1.2.2).)

2Here thatmeans chain rule and the rule for computing the derivative of the inverse function in terms
of the derivative of the original function.
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1.3 ODEs that can be transformed in separable form

To introduce this method, let us first look at two examples.

Example 1.4.

Find the general solution of the ODE

dy

dx
=

3y − 2x

2x
.

This equation is not separable but can be rewritten as as

dy

dx
=

x
(
3y
x − 2

)
2x

=
3

2

y

x
− 1.

The right hand side depends only on
y

x
. We make this the new independent variable:
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Example 1.5.

Find the general solution of

dy

dx
= − y2

xy + x2
= −

(
y
x

)2
1 + y

x

.

substitute y = xv(x),
dy

dx
= v + x

dv

dx
.
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1.3.1 Summary

An ODE of the form
dy

dx
= f

(y
x

)
is called of homogeneous degree.3 An ODE of homogeneous degree can be solved by

transforming it in separable form by the substitution v =
y

x
.

3Be aware that we will introduce the term homogeneous later to mean something different. Please
keep the two notion apart in your mind.
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The general solution os obtained as follows: consider

dy

dx
= f

(y
x

)
and se v(x) =

y

x
. Thus, we obtain

dy

dx
=

y

x
+ x

dv

dx
.

With the original equation, we then obtain

f(v)− v = x
dv

dx
.

Thus, we obtain the separated equation

dx

x
=

dv

f(v)− v
.

From here, one can use the method discussed to solve separable ODE.
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1.4 First order linear ODEs

In this section, we want to derive a general solution for the following initial value prob-

lem:

a(x)
dy

dx
+ b(x)y = f(x).

1.4.1 The method of integrating factors

Example 1.6.

The following example is again divided in a couple of steps:

a) First, we consider a (sufficiently smooth) arbitrary function y = y(x). Find a for-

mula for
d

dx
(xy(x)):

b) Find the general solution of

x
dy

dx
+ y = ex.

By the above, the equation can be rewritten as
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c) Find the general solution of

1

x

dy

dx
+

y

x2
= x3.

This equation can not be rewritten as easily as the equation in b). However, if we

multiply the equation by x2, we can:

Some theory (integrating factor)

• An equation of the form

a(x)
dy

dx
+ b(x)y = f(x) (1.4.1)

is called linear, i.e. the terms involving y and
dy

dx
are all in first power.

• If b(x) =
da

dx
(x), then (1.4.1) is

which can be rewritten as
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This equation can be integrated and gives

a(x)y =

∫
f(x)dx.

• If b is not the derivative of a, then equation (1.4.1) can be multiplied by a function

µ(x) such that it can be integrated. First, we divide by a(x) and obtain

where

p(x) =
b(x)

a(x)
, q(x) =

f(x)

a(x)
.

If we multiply an ansatz function µ = µ(x) and obtain

When we ask

dµ

dx
= µp(x) ⇒ µ(x) = exp

(∫
p(x)dx

)
.

With that, we can rewrite

dy

dx
+ p(x)y = q(x)

to
d

dx
(µ(x)y) = µ(x)q(x).

Hence

µ(x)y =

∫
µ(x)q(x)dx

and finally

y(x) =
1

µ(x)

∫
µ(x)q(x)dx.

• With that we have an explicit solution of (1.4.1). In calculating the integral for µ,

we do not need the integration constant. We only need one functionµ that trans-

forms (1.4.1) to integrable form.

The function µ is called an integrating factor.
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Exercise 1.3. Find the general solution of

dy

dx
+

2

x
y = x2.
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Example 1.7.

Assume the capacitor is initially charged to chargeQ0. At time t = 0, the switch is

closed so that the capacitor is connected to a voltage sourceU via a resistorR. Find

the chargeQ(t) on the capacitor as a function of time.

Physics:

• The voltage across the resistor and the capacitor must add toU .

• The voltage across the resistor isRI , where I is the current through the resistor.

• The voltage across the capacitor is
Q

C
.

• The currents through the resistor and the capacitor must be the same.

• If in time∆t a charge∆Q is added to the capacitor, the current is I =
∆Q

∆t
. If

∆t → 0, we obtain I =
dQ

dt
.

We translate that into equations:

This can be rewritten to
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To solve the equation, we calculate the integrating factor

Thus, we obtain

Fix constant k by initial value:

In particular, if we start with an uncharged capacitorQ0 = 0, then
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Further,

I(t) =
dQ

dt
= CU

(
0− 1

−RC
exp

(
− t

RC

))
=

U

R
exp

(
− t

RC

)
decays exponentially to zero.

Exercise 1.4. Confirm the above derivative
dQ

dt
.
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Summary of the method of integrating factor

As we have seen above, an integrating factor is a functions with which we canmultiply

a differential equation on order to transform it to an integrable equation.

Given an equations of the form

dy

dx
+ p(x)y = q(x),

we get

µ(x)

(
dy

dx
+ p(x)y

)
=

d

dx
(µ(x)y) = µ(x)q(x)

if we set

µ(x) = exp

(∫
p(x)dx

)
.

With that, the general solution is

y(x) =
1

µ(x)

∫
µ(x)q(x)dx.

The integration constant of the integral on the right hand side is the free constant of

the general solution that can be fixed by an initial condition.

Example 1.8. To solve
dy

dx
+ x2y = ex,

we calculate

µ(x) =

∫
x2dx =

1

3
x3.

Then, we get

e
1
3x

3 dy

dx
+ e

1
3x

3
x2y︸ ︷︷ ︸

= d
dx

(
e
1
3x

3
y

)
= e

1
3x

3+x.

Hence, we get

y(x) = e−
1
3x

3
∫

e
1
3x

3+x
dx.
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1.4.2 The method of variation of parameters

In this section, we consider the general linear first order ODE

dy

dx
= a(x)y + b(x) (1.4.2)

with initial datum y(x0) = y0, where x0 and y0 are real numbers.

Some more vocabulary:

• We can see that the equation is linear. See page 3.

• The equation above is said to be inhomogeneous if b is not identically 0 and ho-

mogeneous if b(x) = 0 for all x.

Note that the term does not involve the dependent variable.

We can solve the homogeneous equation equation

dy

dx
= a(x)y (1.4.3)

by separation of variables:∫
1

y

dy

dx
dx︸ ︷︷ ︸

=ln |y|

=

∫
a(x)dx =

∫ x

x0

a(u)du+ C (1.4.4)

and, thus, we get

yh(x) = K exp

(∫ x

x0

a(u)du

)
. (1.4.5)

The particular limits of the integral over a are chosen to pick the integration constant

C = 0 as we have the needed integration constantK in front of (1.4.5). We allowK

to be an arbitrary number to resolve the modulus |y| in the result of the integral of the
left hand side in (1.4.4). We use the index h to indicate that the yh is a solution of the

homogeneous equation associated to (1.4.2)

This is, however, only part of the solution as we want to solve (1.4.2) and not just (1.4.3).
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The next step is called variation of parameters. We setK = K(x) and make the

ansatz

yp(x) = K(x) exp

(∫ x

x0

a(u)du

)
.

Now, we calculate the derivative
dyp
dx

:

dyp
dx

=
dK

dx
exp

(∫ x

x0

a(u)du

)
+K(x)a(x) exp

(∫ x

x0

a(u)du

)
=

dK

dx
exp

(∫ x

x0

a(u)du

)
+ a(x)yp(x).

From that equation, we obtain that

dK

dx
exp

(∫ x

x0

a(u)du

)
= b(x)

which gives

K(x) =

∫ x

x0

b(z)e
−
∫ z
x0

a(u)du
dz.

We can drop4 the integration constant as we only need a particularK = K(x). This

is equivalent to choosing the particular definite integral

K(x) =

∫ x

x0

b(z)e
−
∫ z
x0

a(u)du
dz.

With that, the final solution is the superposition

y(x) = yh(x) + yp(x)

=

(
K +

∫ x

x0

b(z)e
−
∫ z
x0

a(u)du
dz

)
exp

(∫ x

x0

a(u)du

)
.

As before, one can determine the constantK if an initial datum is given.

4i.e. choose it to be zero
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With that, we have proven the following theorem:

Theorem 1.1.

Consider {
dy
dx = a(x)y + b(x)

y(x0) = y0
. (IVP)

Then,

y(x) =

(
y0 +

∫ x

x0

b(z)e
−
∫ z
x0

a(u)du
dz

)
exp

(∫ x

x0

a(u)du

)
solves the IVP.

Exercise 1.5. Solve the inhomogeneous IVP{
dy
dx = sin(x)y+

y(0) = 1

with the method of variation of constants.
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Exercise 1.6. Solve the non-homogeneous IVP{
dy
dx = xy + e3x(x− 3)

y(0) = 1

with the method of variation of constants.
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1.5 Second order linear ODEs

A linear second order ODE has the form

a(x)
d2y

dx2
+ b(x)

dy

dx
+ c(x)y = f(x) (1.5.1)

with known functionsa, b, and cwhich are called the coefficients and a known function

f which is called the right hand side, forcing function.

Vocabulary:

1. The equation is of second order5. See also Page 2.

2. The equation is linear. See also Page 3.

3. If the functions a, b, and c are constant, we say that the differential equation has

constant coefficients. If the a, b, or c are variable functions, we say the equation

has variable coefficients.

4. If f(x) = 0 for all x, then the equation is called homogeneous. If f is not

identically 0, we call the equation non-homogeneous. Pay attention that this is

different from homogeneous in Section 1.3.

Sometimes, thehomogeneousequation associated to anon-homogeneousequa-

tion is called reduced equation:

a(x)
d2y

dx2
+ b(x)

dy

dx
+ c(x)y = 0 (1.5.2)

5. Superposition of solutions. This is a general property of linear equations. Ify1 and

y2 are solutions to (1.5.2), thenα1y1 + α2y2 is also a solution for any constants

α1 andα2.

5if a is not identically 0.
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1.5.1 The superposition principle

Wehave the following result which ismakingmore precise the situation on pages 3 and

5. As you can easily check, the functions

cos

(√
k

m
t

)
and sin

(√
k

m
t

)
are solutions to

m
d2x

dt2
= −kx. (1.5.3)

As we have shown in Section 1.1.2, the function

α1 cos

(√
k

m
t

)
+ α2 sin

(√
k

m
t

)
is a solution to (1.5.3) for arbitrary constantsα1 andα2.

Theorem 1.2 (Superposition of solutions of linear 2nd order equations).

Let y1 and y2 be solutions of (1.5.2). Then, for all constantsα1 andα2, the function

α1y1 + α2y2 is a solution of (1.5.2).

Let us check:
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1.6 Solution of second order linear equations

If yh is a solution of the homogeneous equation

a(x)
d2y

dx2
+ b(x)

dy

dx
+ c(x)y = 0 (1.6.1)

and yp a solution of

a(x)
d2y

dx2
+ b(x)

dy

dx
+ c(x)y = f(x),

then

y(x) = yh(x) + yp(x)

is a solution of (1.5.1).

Exercise 1.7.

Check the last claim by a similar calculation as in Section 1.5.1.
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To solve the non-homogeneous equation (1.5.1):

1) Find two6 solutions y1 and y2 of the homogeneous equation (1.6.1). Then

yh(x) = α1y1(x) + α2y2(x)

is the general solution of the homogeneous equation (1.6.1). This solution yh is

called complementary function.7

2) Find one particular solution yp of the full equation (1.5.1). Then

y(x) = yh(x) + yp(x)

= α1y1(x) + α2y2(x) + yp(x)

is the general solution of (1.5.1).

The function yp is called a particular integral or a particular solution of (1.5.1).

1.6.1 Constant coefficients

We consider the differential equation

a
d2y

dx2
+ b

dy

dx
+ cy = f(x). (1.6.2)

To find the two solutions of the homogeneous equation

a
d2y

dx2
+ b

dy

dx
+ cy = 0

associated to (1.6.2), we write down the auxiliary equation8

aλ2 + bλ+ c = 0

by replacing
dky

dxk
with λk .

6The two is coming from second order. For equations of higher order, you have to find order many
solutions.

7Complementary function: the part of the general solution of a linear differential equation which
is the general solution of the associated homogeneous equation obtained by substituting zero for the
terms not containing the dependent variable.

8We also call this equation the characteristic polynomial of the differential equation.
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The auxiliary equation is coming from the ansatz y(x) = eλx substituted into the

equation:

The classification of quadratics
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Example 1.9.

Find the general solution of

d2y

dx2
− 2

dy

dx
− 15y = 0.

Example 1.10.

Find the general solution of

2
d2y

dx2
+ 4

dy

dx
+ 6y = 0.
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Example 1.11.

Find the general solution of

d2y

dx2
− 4

dy

dx
+ 4y = 0.
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Summary

To solve the homogeneous second-order linear ODE with constant coefficients

a
d2y

dx2
+ b

dy

dx
+ cy = 0,

we first solve the auxiliary equation

aλ2 + bλ+ c = 0. (1.6.3)

We have

λ± = − b

2a
±
√

b2

a2
− c

a
= −−b±

√
b2 − 4ac

2a
.

Solutions of (1.6.3) General solution of ODE

a) two distinct real solutions
λ− and λ+

y(x) = α1e
λ−x + α2e

λ+x

b) two complex conjugated
solutions λ± = α± iβ

y(x) = eα(α1 cos(βx) + α2 sin(βx))

c) one double solutionλ = λ± y(x) = (α1x+ α2)e
λx
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1.6.2 Examples

Example 1.12.

A massm is attached to an elastic spring of force constant k, the other end of which

is attached to a fixed point. The spring is supposed to obey Hooke’s law, namely that,

when it is extended (or compressed) by a distancex from its natural length, the tension

(or thrust) in the spring is kx, and the equation of motion is

m
d2x

dt2
= −kx

or
d2x

dt2
+ ω2

0x = 0, ω2
0 =

k

m
a linear, second order, homogeneous ODE with constant coefficients.

The auxiliary equation is

The solutions are

Hence, the general solution is

This can be written as
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Relating the two forms

The form shows that the solution is a harmonic oscillation with amplitude a,

frequencyω0.

Example 1.13. Now, we consider the same situation as in Example 1.12 but introduce

friction as a more physical assumption.

We assume that the friction force is proportional to the velocity of the particle. Thus,

we get the equation

This is a second order linear ODE with constant coefficients.
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1.6.3 Finding particular solutions

There is a general method to find particular solutions which we have already discussed

in the case of first order linear equations: variation of parameters. See also Kreyszig

2.10. You can also find themethod described for second order equations in Paul’s Online

Math Notes.

In many physically relevant cases, we can guess a particular solution. The general idea

is as follows: The particular solution should have the ‘same form’ as the inhomogen-

eous (‘driving’) term.

We illustrate that with an example:

Example 1.14.

Find the general solution of

d2y

dx2
+ 5

dy

dx
+ 6y = 2x

Step 1: We find the complementary function, i.e. the solution yh to the homogeneous

problem.

Step 2: Finding a particular integral. The driving term is a

Thus, we make the ansatz

Now we determine the parameters:

http://tutorial.math.lamar.edu/Classes/DE/VariationofParameters.aspx
http://tutorial.math.lamar.edu/Classes/DE/VariationofParameters.aspx
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Thus, the general solution is

Example 1.15.

Find the solution of
d2y

dx2
+

dy

dx
− 2y = 5e3x

with the initial conditions

y(0) = −1, y′(0) = 0.

Step 1: We find the complementary function, i.e. the solution yh to the homogeneous

problem.
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Step 2: Finding a particular integral. The driving term is a

Thus, we make the ansatz

Now we determine the parameters:

Thus, the general solution is

Step 3: Finally, we determine the constants:



CHAPTER 1. ORDINARY DIFFERENTIAL EQUATIONS 51

Example 1.16.

Find the general solution of

d2y

dx2
+

dy

dx
− 2y = 6e−2x

with the initial conditions

y(0) =
9

2
, y′(0) = 1.

Step 1: The complementary function is

Step 2: Finding a particular integral. The driving term is a

The usual ansatz would be

yp(x) = Re−2x.

However, that is part of the complementary function. If we substitute this an-

satz into the ODE, we will get zero:

We modify the usual ansatz:



CHAPTER 1. ORDINARY DIFFERENTIAL EQUATIONS 52

Step 3: Fially, we determine the constants:
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Example 1.17.

In Example 1.12 on Page 43, we have discussed the dynamics of a damped oscillator.

Now, we want to study the same oscillator when an external force

Fext = F0 cos(Ωt)

is acting on it.
9

The equation of motion is

A bit shorter

with

Let us find the general solution to this equation:

1. The complementary function id the general solution of

d2x

dt2
+ γ

dx

dt
+ ω2

0x = f0 cos(Ωt).

We know the solution from Example 1.12. Wemust distinguish the cases of weak,

critical, or strong damping.

2. We find a particular integral. We make the ansatz

9A discussion of this example can be found here in the lecture notes on Oscillations and waves from
Richard Fitzpatrick at the University of Texas at Austin.

http://farside.ph.utexas.edu/teaching/315/Waves/node13.html
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Now we discuss the amplitude a(Ω) of the steady state oscillator as a function

of the driving frequencyΩ:

a(Ω = 0) =
f0
ω2
0

6= 0.

For largeΩ:

a(Ω) =
f0√

(ω2
0 − Ω2)2 + Ω2γ2

≈ f0√
Ω4 + Ω2γ2

≈ f0
Ω2

.

Are there maxima/minima?
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2
Multiple Integrals

Multiple integrals are integrals of functions depending onmore than one variable. They

are useful to calculate

• masses,

• volumes,

• centres of mass,

• moments of inertia,

and many other quantities. We will start by looking at ‘double integrals’, or integrals

over areas and then look at ‘triple integrals’.

2.1 Ordinary Integration

As you have learned, ∫ b

a
f(x)dx

measures the (signed) area under the graph of y = f(x).

57
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Divide the length [a, b] into intervals of width∆x.∫ b

a
f(x)dx = lim

∆x→0

∑
intervals

width of interval× height

= lim
∆x→0

n∑
i=1

f(xi)∆x

2.2 Integrals over areas

Suppose that we want to calculate the volume under a graph of f(x, y) over some

regionA in the xy-plane.

To do this, first divideA up into rectangles with dimensions∆x,∆y.

y

x

Volume under

graph
= lim

∆x,∆y→0

∑
rectangles

area of rectangle× height.
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There are two ways to order the sum:

(i) First add up the volumes of all the cuboids in each row, then sum over rows.

(ii) First addup the volumesof all thecuboids in eachcolumn, then sumover columns.

2.2.1 Integrals over rectangles

Assume thatA is a rectangle defined by a ≤ x ≤ b and c ≤ y ≤ d.

(i) sum over rows first:
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Volume under

graph
= lim

∆x,∆y→0

n∑
j=1

(
m∑
i=1

f(xi, yj)∆x∆y

)

= lim
∆y→0

n∑
j=1

(∫ b

a
f(x, yj)dx

)
∆y

=

∫ d

c

(∫ b

a
f(x, y)dx

)
dy

(ii) sum over columns first:

Volume under

graph
= lim

∆x,∆y→0

m∑
i=1

 n∑
j=1

f(xi, yj)∆x∆y


= lim

∆x→0

m∑
i=1

(∫ d

c
f(xi, y)dy

)
∆x

=

∫ b

a

(∫ d

c
f(x, y)dy

)
dx
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Example 1
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Example 2
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Exercise 2.1. Verify the following integrals:∫ 2

−1

∫ 2

−1
x2y dy dx =

9

2
,∫ 2

−1

∫ 3

−2
x sin(πy) dy dx =

3

π
,∫ 4

0

∫ 1

0
xy sin(πy) dy dx =

8

π
,∫ 1

0

∫ 1

0
sin(πy)x2ex dy dx =

2(e− 2)

π
, and∫ 2π

π

∫ 2π

π
ey sin(x) cos(y) dy dx = −eπ(1 + eπ).
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2.2.2 Order of integration (rectangular regions)

In practice, we do not need to write the brackets in the expression∫ d

c

(∫ b

a
f(x, y)dx

)
dy.

If we write ∫ d

c

∫ b

a
f(x, y)dx dy,

we understand that this means

• first integrate with respect to x from a to b,

• then integrate with respect to y from c to d.

If we write ∫ b

a

∫ d

c
f(x, y)dy dx,

we understand that this means

• first integrate with respect to y from c to d,

• then integrate with respect to x from a to b.

i.e. you work from the inside to the outside.

For rectangular regions both integrals give the same answer.

2.2.3 Order of integration (curved regions)

In general, the integral of f(x, y) over a non-rectangular regionA could be written as∫∫
A
f(x, y)dx dy =

∫ d

c

∫ b(y)

a(y)
f(x, y)dx dy

or ∫∫
A
f(x, y)dy dx =

∫ q

p

∫ s(x)

r(x)
f(x, y)dy dx.

The limits a(y), b(y), c, d will differ from the limits p, q, r(x), s(x).
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In general, we have∫ d

c

∫ b(y)

a(y)
f(x, y)dx dy 6=

∫ b(y)

a(y)

∫ d

c
f(x, y)dy dx

and ∫ q

p

∫ s(x)

r(x)
f(x, y)dy dx =

∫ s(x)

r(x)

∫ q

p
f(x, y)ddx dy

If the function f(x, y) is continuous overA, one can, just as in the case of rectangular

regions, interchange the order of integration. However, as already noted, one has to

adjust the limits in the integrals.

Exercise 2.2. Use double integrals to compute the area of a circle of radius r > 0, i.e.

compute

r∫
−r

√
r2−y2∫

−
√
r2−y2

1 dxdy.

Write down how the integral would look like if you exchange the order of integration.

Why are the limits what they are?
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Example 1: curved boundary
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Example 2: curved boundary
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Example: Splitting of regions

Sometimes it is necessary to split the region of integration into smaller pieces.
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2.3 Triple integrals

In the last section, we have learned how

• double integrals are defined,

• double integrals over rectangular regions are calculated, and

• double integrals over curved regions are calculated.

Now, we will do the same for triple integrals.

2.3.1 Some motivation

Suppose that we know the mass density ρ(x, y, z) of an object. How do we find its

mass?

Solution: We divide the object into small boxes of dimensions∆x,∆y,∆z , find the

mass of each box, which is approximately

ρ(xi, yj, zk)∆x∆y∆z

and then add all the masses.

Figure 2.1: A small cuboid mass in a bigger object.

Taking the limit results in a triple integral

Mass = lim
∆x→0
∆y→0
∆z→0

∑
all boxes

ρ(xi, yj, zk)∆x∆y∆z.
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2.3.2 Evaluating triple integrals

Triple integrals are of the form

∫ b

a

∫ H2(x)

H1(x)

∫ G2(x,y)

G1(x,y)
f(x, y, z) dz dy dx.

We can justify performing the integrals sequentially by considering the figures below:

Figure 2.2: Integrating over a column (a), a slab (b) and finally the whole volume (c).
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2.3.3 Examples
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2.4 Some applications of multiple integrals

In the previous sections, we learned about double and triple integrals.

In the next section, we will see how to use these to calculate:

• the masses, areas, and volumes

• the centres of mass

• moments of inertia

• forces due to pressure

Figure 2.3: “Hang on lads, I’ve got a great idea...” by the artist Richard Wilson. At the De La Warr
Pavilion in Bexhill.
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2.4.1 Some notation

It is common to write ∫∫
A
f dA =

∫∫
A
f(x, y) dA

as a shorthand for the double integral of a function f(x, y), whereA denotes the re-

gion of integration. Similarly,∫∫∫
V
g dV =

∫∫∫
V
g(x, y, z) dV

means the integral of a function g(x, y, z) over a volume V .

2.4.2 Mass, area, and volume

Suppose that a 2D object is described by a regionA in the planewithmass per unit area

λ(x, y). Then

• the area of the object is

∫∫
A
1 dA;

• the mass of the object is

∫∫
A
λ dA.

Similarly, for a 3Dobject describedby a volumeV withmassper unit volumeρ(x, y, z),

• the volume of the object is

∫∫
V
1 dV ;

• the mass of the object is

∫∫
V
ρ dV .

2.4.3 Centre of mass

The centre ofmass of a 2D object is a point (x0, y0). It is calculated using the formulae:

x0 =
1

mass

∫∫
A
xλ(x, y) dA, y0 =

1

mass

∫∫
A
yλ(x, y) dA.



CHAPTER 2. MULTIPLE INTEGRALS 82

The centre of mass (x0, y0, z0) of a 3D object is given by

x0 =
1

mass

∫∫∫
V
xρ(x, y, z)dV,

y0 =
1

mass

∫∫∫
V
yρ(x, y, z)dV,

z0 =
1

mass

∫∫∫
V
zρ(x, y, z)dV.

2.4.4 Moment of inertia

Themoment of inertia of an object measures how difficult it is to rotate.

Just as objects with large masses are difficult to move, objects with large moments of

inertia are difficult to rotate.

The angular momentumL of a body with moment of inertia I rotating at angular velo-

cityω is given by

L = Iω.

Angular momentum is conserved if no external forces act on the body.

Calculating moments of inertia

The moment of inertia of a 3D object rotating about the x-axis is given by

Ix =

∫∫∫
V
(y2 + z2)ρ(x, y, z)dV.

Similarly, the moments of inertia about the y- and z-axes are

Iy =

∫∫∫
V
(x2 + z2)ρ(x, y, z)dV

Iz =

∫∫∫
V
(x2 + y2)ρ(x, y, z)dV.

For 2D objects:

Ix =

∫∫
A
y2λdA, Iy =

∫∫
A
x2λdA, Iz =

∫∫
A
(x2 + y2)λdA.
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2.4.5 Example
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2.4.6 Forces due to pressure

The force due to a pressureP (x, y) on an areaA is∫∫
A
P (x, y)dA.

Figure 2.4: Flaming Gorge Dam, Utah
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2.5 Integrals in polar coordinates

We have

y

O

P

r

x
θ

Using basic trigonometry, we obtain

• Given (r, θ), then (x, y) are given by

x = r cos(θ)

y = r sin(θ)

• Given (x, y), then (r, θ) are given by

r =
√
x2 + y2

tan(θ) =
y

x
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We use the following formula to calculate integrals in polar coordinates:∫∫
A
fdA =

∫∫
A
f(r, θ)rdrdθ.
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2.5.1 Examples
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2.6 3D cylindrical polar coordinates

We have

Again, using elementary trigonometry, one gets

x = r cos(θ)

y = r sin(θ)

z = z

We use the following formula to calculate integrals in cylindrical coordinates:∫∫∫
V
fdV =

∫∫∫
V
f(r, θ, z)rdrdθdz.
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2.6.1 Examples
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2.7 3D spherical coordinates

We have

Again, using elementary trigonometry, one gets

x = r sin(θ) cos(ϕ)

y = r sin(θ) sin(ϕ)

z = r cos(θ)

We use the following formula to calculate integrals in cylindrical coordinates:∫∫∫
V
fdV =

∫∫∫
V
f(r, θ, ϕ)r2 sin θdrdθdϕ.
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2.7.1 Examples
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Chapter

3
Probability Theory

Consider an experiment with random outcome and we are going to assume that the

experiment is repeated many times.

The number of times a given outcome is obtained is called its absolute frequency. The

absolute frequency divided by the total number of repetitions is called the relative fre-

quency. The relative frequency is a number between 0 and 1.

Example 3.1. Die with data table.

If an experiment is repeated many times, the relative frequencies will stabilise at cer-

tain values.1 These are called the probabilities of the outcomes. Since the relative

frequencies are numbers between 0 and 1, the probabilities are between 0 and 1. An

outcomewith probability 0 is impossible. An outcomewith probability 1 is certain. The

probabilities of all outcomes have the sum 1.

A collection of some or all outcomes of an experiment is called an event. The collection

of all possible outcomes is usually defined byΩ. An eventA is a sub-set ofΩ.

The probabilityP (A) is calculated as

P (A) =
#(A)

#(Ω)
=

number of outcomes inA

total number of outcomes
,

where the function#(S) counts the number of elements in the set S . This definition

only works ifΩ is finite.

The set of all possible events is the power set 2Ω ofΩ, i.e. the set of all sub-sets ofΩ.
1Strictly speaking that is not true and probability should be treated axiomatically following the ap-

proach of Kolmogorov. However, this approach is mathematically more difficult.

100



CHAPTER 3. PROBABILITY THEORY 101

3.0.1 Elementary probability theory

Example 3.2 (Throwing a die).

For a die, the setΩ is given by {1, 2, 3, 4, 5, 6}.

• The probability to throw a 4 is
1

6
.

• The probability to throw an even number is
3

6
=

1

2
.

• The probability to throw at least 3 is
4

6
=

2

3
.

Example 3.3 (Throwing two dice).

We consider pair of perfectly fair dice.

1. What is the probability that the total score is 5? The total score can be between

2 and 12, but these results are not equally likely. If we denote an outcome by

(first die score, second die score) ,

then the 36 outcomes

(1, 1) (1, 2) . . . (1, 6)

(2, 1) . . . . . . (2, 6)
...

...

(6, 1) . . . . . . (6, 6)

are equally likely. There are four outcomes with total score 5:

Hence,

2. What is the probability that the total score is 6?
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3. What is the probability that the total score is not 5? We can count the outcomes

with scores other than 5. However, it is simpler to calculate

4. What is the probability that a double is thrown, i.e. the numbers on both dice are

equal?

5. What is the probability that a double is thrown or the total score is 5?

a) Combine the favourable outcomes of 1. and 4.:

b) We alternatively compute:
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6. What is the probability that a double is thrownor the total score is6? Wecombine

the favourable outcomes from 2. and 4.:

Let us collect some of the rules we have used so far and introduce some notation:

The empty event is denoted by ∅. given two eventsA andB , we denote the event ‘A

andB ’ byP ∩ A and the event ‘A orB ’ byA ∪B .

1. We have the trivial probabilitiesP (∅) = 0 andP (Ω) = 1.

2. For every eventA, we have

P (A) + P (Ac) = 1,

whereAc is the complement event ofA, i.e. ‘notA’.

3. If eventsA,B are mutually exclusive, in symbolsA ∩B = ∅. Then

P (A ∪B) = P (A) + P (B).
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4. For any eventsA andB , we have

P (A ∪B) = P (A) + P (B) + P (A ∩B).

Remark 3.1.

Case3. is a special case of4. IfA andB aremutually exclusive, thenP (A∩B) = 0.

The case 2. is a special case of 2.:

P (A) + P (Ac) = P (A ∪ Ac︸ ︷︷ ︸
=Ω

) = 1

sinceA ∩ Ac = ∅.

Example 3.4 (Throwing two dice continued).

7. What is theprobability that the first die showsat least5and the seconddie shows

an even number. Listing all the possibilities:

Or

Note: This argument onlyworks because the two events are independent, i.e. the

result on die 1 does not influence the result on die 2.
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8. What is the probability to have at least 5 on the first die and a total score of at

least 8?

Possibilities:

Note:

Example 3.5. You throw a die and a coin. What is the probability that you throw a 6 and

‘heads’?

Alternative argument:
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Calculating the probability of ‘A andB ’,P (A∩B), for two independent eventsA and

B is calculated by

P (A ∩ P ) = P (A)P (B).
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3.1 Excursus: Combinatorics - How to count

Example 3.6. To introduce the different counting numbers as factorial and the binomial

coefficient, we will use illustrative examples.

1. I want to fly 10 different flags on 10 poles. How many possibilities do I have to

arrange them?

Rule: There are n! = n · (n − 1) · . . . · 2 · 1 (speak n factorial)

permutations (i.e. different orderings) of n objects.

2. The flags are not all different. I have seven blue and three yellow ones. In how

many ways can I arrange them?

As we have seen before, there are 10! arrangements of the flags in total. Since

it does not matter if we rearrange the blue or yellow ones within themselves, we

need to remove the number of arrangement for each.

There are 7! ways to rearrange the blue ones and 2! ways to arrange the yellow

ones. Thus, there are

possibilities.
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Different interpretations:

There are102 possibilities to pick7 out of10 poles onwhich to fly the blue flags.

Rule: There are (
n

k

)
=

n!

k!(n− k)!

ways to choose k objects out of a collection of n. This number is

called binomial coefficient.

3. In how many ways can I arrange 5 blue, 3 yellow, and 2 red flags?
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3.2 Mean and variance

I throw a die 100 times and obtain

1 2 3 4 5 6
abs. freq. 21 14 22 12 16 15
rel. freq. 0.21 0.14 0.22 0.12 0.16 0.15

The mean of the result is

X =
21 · 1 + 14 · 2 + . . .+ 15 · 6

10
= 0.21 · 1 + 0.14 · 2 + . . .+ 0.15 · 6

= 3.33.

Note how the mean is expressed by the relative frequencies. In an ‘ideal’ sample, the

relative frequencies would be the probabilities. In that sample, we would find

µ =
1

6
· 1 + 1

6
· 2 + . . .+

1

6
· 6

=
1

6
· 7 · 6

2
= 3.5.

This idealised mean is called expectation value. It is a theoretical quantity that de-

scribes a probability distribution.

Rule: If a random variableX takes different valuesx1, . . . , xn with prob-

abilities p1, . . . , pn respectively, then its expectation value is

µ = p1x1 + p2x2 + . . .+ pnxn =
n∑

i=1

pixi.

A measure of the spread of a distribution, we can use the variance

σ2 =
n∑

i=1

pi(xi − µ)2

= p1(x1 − µ)2 + . . .+ pn(xn − µ)2

or the standard deviation σ =
√
σ2, i.e.

σ =

√√√√ n∑
i=1

pi(xi − µ)2.
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In the example, the variance of the number on a die is

σ2 =
1

6

(
(1− 3.5)2 + (2− 3.5)2 + . . .+ (6− 3.5)2

)
=

35

12
≈ 2.92.

The standard deviation is

σ ≈
√
2.29 = 1.71
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3.3 The binomial distribution

Example 3.7. We consider a lottery in which we have a chance of winning of
1
3 in every

game. We assume that consecutive games are independent.

1. I play five games. What is the probability that I win exactly twice?

2. What is the probability that I win at most twice in the same game as in the first

question.
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3. The probability to win at least three times is

3.3.1 General formulas

Consider an experiment2 that succeeds with probability p and repeat the experimentn

times independently. LetX be the random variable counting the successes. Then, the

probabilityP (X = k), i.e. of k successes, is given by

Using the rules from Section 3.0.1, we get

P (X ≤ k) =
k∑

i=0

(
n

i

)
pi(1− p)n−i

and

P (x ≥ k) =
n∑

i=k

(
n

k

)
pi(1− p)n−i

= 1− P (X ≤ k − 1)

The expectation value ofX is np and the variance is np(1− p).

2Such experiments are called Bernoulli experiment.
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3.3.2 A second example

Example 3.8. The probability that a car travelling along a certain road will have a tyre

burst is
1
50 . Find the probability that amongst 15 cars that

1. exactly one has a burst.

2. two or more have a burst.
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3.3.3 The Poisson distribution

Consider an experiment for which the probability p of a success is very small, but the

number of n of repetitions is very large, such that the expected number of successes

λ = np is fixed.

Then to a good approximation, we have

P (X = k) = e−λλ
k

k!
,

whereX counts again the number of successes. This is called the Poisson distribution.

The random variable can take values k ∈ N0 = {1, 2, . . .}.
The expected value ofX is λ and the variance is λ.

We can quickly check the normalisation:

+∞∑
k=0

P (X = k) =
+∞∑
k=0

e−λλ
k

k!
= e−λ

+∞∑
k=0

λk

k!︸ ︷︷ ︸
=eλ

= 1.

3.3.4 Two examples

Example 3.9. On average, 120 cars pass a checkpoint per hour. LetN be the number

of cars that pass in a 5-minutes interval.

1. What is the probability that exactly 4 cars pass?

2. What is the probability that exactly 10 cars pass?
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3. What is the probability that at least 4 cars pass?

Example 3.10. Rocks on the surface of the moon are scattered at random but on aver-

age there are 0.3 rocks perM 2
on the moon.

1. An exploring vehicle covers an are of 8m2
. What is the probability that it finds

two or more rocks?

2. What area should be explored if there is to be a probability of 0.8 of finding 1 or

more rocks.
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3.3.5 Continuous probability distributions

In contrast to the binomial and Poisson distribution, we now allow the random variable

to take real values and not just integers. That is what the continuous is referring to.

Binomial and Poisson are called discrete probability distributions.

Example 3.11. Spin awheel of fortune. It can stop at any angle from0 to2π. Weassume

that it stops ‘everywhere with same probability’.

The probability that it stops at exactly π (or at any other point) is zero. We must ask

about intervals. The probability that it stops between
π
2 and

3π
2 is

1
2 :

P (π2 < ϕ < 3π
2 ) = P (π2 ≤ ϕ ≤ 3π

2 ) =
1

2
.

The probability that it sops between
π
2 and π is

1
4 .

We describe the distribution by a probability density function, in Example 3.11 and in

general. Here, the density would be



CHAPTER 3. PROBABILITY THEORY 117

This is

Probability density functions have in general the following properties:

1. f(ϕ) ≥ 0 for allϕ ∈ R,

2.

∫ b

a
f(ϕ)dx is theprobability that thewheel stopsbetweenaandb. Note: f(ϕ)dϕ

is the probability to obtain a result betweenϕ andϕ+ dϕ.

3.

+∞∫
−∞

f(ϕ)dϕ = 1

Mean and variance of a continuous distribution with a pdf (probability density function)

f are obtained by

µ =

∞∫
−∞

xf(x)dx

and

σ2 =

∞∫
−∞

(x− µ)2f(x)dx

These formulas are similar to the ones for discrete distributions. See Section 3.2.
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3.3.6 Examples

Example 3.12. A random variableX has probability density function

f(x) =

{
N
x2

: 1 ≤ x ≤ 5

0 : otherwise

1. Find the normalisation constantN .

2. Find the probability thatX is between 2 and 3.

3. The probability thatX is larger than 4.
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3.4 The normal (Gaussian) distribution

A random variableX follows a normal distributionwithmeanµ and standard deviation

σ (i.eX ∼ N(µ, σ2)) if it has the pdf

f(x) =
1√
2πσ2

e−
(x−µ)2

2σ2 .

Exercise 3.1. A company manufactures light bulbs with nominal (mean) power ofµ =

10W. The actual powers, denoted byX , follow a normal distribution with standard de-

viation σ = 0.5W.

1. What is the probability that a light bulb has power between 10W and 11W?
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2. What is the probability that power is between 11W and 11.5W?

3. What is the probability that the power is between 9.5W and 11W?

4. What is the probability that the power is less than 9W.?



Appendix

A
Some Prerequisites

A.1 Integration by substitution

Integration by substitution can be seen as a reversion of the chain rule. If we have an

integral of the form ∫
g′(f(x))f ′(x)dx,

we can set y = f(x) and obtain dy = f ′(x)dx. Thus, we get∫
g′(f(x))f ′(x)dx =

∫
g′(y)dy.

If the last integral is easy, then we integrate and substitute back and finally obtain∫
g′(f(x))f ′(x)dx = g(f(x)) + C.

An example is ∫
x
√
x2 + 1dx =

1

2

∫
2x

√
x2 + 1dx.

Setting y = x2 + 1, we get dy = 2xdx which gives∫
2x

√
x2 + 1dx =

∫ √
ydy =

2

3
y

3
2 .

Thus, ∫
x
√
x2 + 1 =

1

3
(x2 + 1)

3
2 + C.
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